QUANTITATIVE CLT FOR LINEAR EIGENVALUE STATISTICS OF WIGNER MATRICES

被引:1
|
作者
Bao, Zhigang [1 ]
He, Yukun [2 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Peoples R China
[2] City Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
来源
ANNALS OF APPLIED PROBABILITY | 2023年 / 33卷 / 6B期
关键词
Wigner matrix; linear eigenvalue statistics; CLT; convergence rate; Kolmogorov-; Smirnov distance; SPECTRAL STATISTICS;
D O I
10.1214/23-AAP1945
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we establish a near-optimal convergence rate for the CLT of linear eigenvalue statistics of N x N Wigner matrices, in Kolmogorov- Smirnov distance. For all test functions f is an element of C5(R), we show that the conver-gence rate is either N-1/2+epsilon or N-1+epsilon, depending on the first Chebyshev coefficient of f and the third moment of the diagonal matrix entries. The condition that distinguishes these two rates is necessary and sufficient. For a general class of test functions, we further identify matching lower bounds for the convergence rates. In addition, we identify an explicit, nonuniversal con-tribution in the linear eigenvalue statistics, which is responsible for the slow rate N-1/2+epsilon for non-Gaussian ensembles. By removing this nonuniversal part, we show that the shifted linear eigenvalue statistics have the unified convergence rate N-1+epsilon for all test functions.
引用
收藏
页码:5171 / 5207
页数:37
相关论文
共 50 条