Assembly and Integration Process of the High-Density Detector Array Readout Modules for the Simons Observatory

被引:0
|
作者
Yaqiong Li
Kam Arnold
Zachary Atkins
Sarah Marie Bruno
Nicholas F. Cothard
Bradley Dober
Cody J. Duell
Shannon M. Duff
Patricio A. Gallardo
Erin Healy
Shuay-Pwu Patty Ho
Johannes Hubmayr
Brian Keating
Adrian T. Lee
Aashrita Mangu
Heather McCarrick
Michael D. Niemack
Laura Newburgh
Christopher Raum
Maria Salatino
Trevor Sasse
Maximiliano Silva-Feaver
Sara M. Simon
Suzanne Staggs
Aritoki Suzuki
Joel Ullom
Eve M. Vavagiakis
Michael R. Vissers
Yuhan Wang
Benjamin Westbrook
Edward J. Wollack
Zhilei Xu
Kaiwen Zheng
Ningfeng Zhu
机构
[1] Princeton University,
[2] University of California San Diego,undefined
[3] Cornell University,undefined
[4] University of Colorado Boulder,undefined
[5] National Institute of Standards and Technology,undefined
[6] University of California Berkeley,undefined
[7] Yale University,undefined
[8] Stanford University,undefined
[9] University of Michigan,undefined
[10] Lawrence Berkeley National Laboratory,undefined
[11] NASA Goddard Space Flight Center,undefined
[12] University of Pennsylvania,undefined
来源
关键词
CMB; Packaging; Multiplexing; RF-SQUID; Readout; TES bolometers;
D O I
暂无
中图分类号
学科分类号
摘要
The Simons Observatory will measure the cosmic microwave background temperature and polarization using a suite of new telescopes in the Atacama Desert in Chile. The Simons Observatory will use dichroic transition edge sensor (TES) bolometer arrays spanning six frequency bands from 27 to 280 GHz. The Simons Observatory will pioneer the use of a densely packed multiplexing architecture based on the microwave SQUID multiplexer (μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}mux), housing ∼2000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim \! 2000$$\end{document} microwave resonators, each coupled to a TES. The Simons Observatory aims to multiplex each array of ∼2000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim \! 2000$$\end{document} detectors with a single pair of coaxial cables and requires a multiplexing factor of ∼1000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim \! 1000$$\end{document}. The Simons Observatory cryogenic readout system is called the universal microwave multiplexing module (UMM). The UMM couples to both horn and lenslet-coupled detector arrays and is integrated into the universal focal-plane module (UFM) after being independently characterized. We present processes we have developed for highly repeatable and automated integration methods of UMMs, which will be needed for the production of the 49 UFMs required for the first stage of the Simons Observatory.
引用
收藏
页码:985 / 993
页数:8
相关论文
共 50 条
  • [31] A soft, high-density neuroelectronic array
    Kyung Jin Seo
    Mackenna Hill
    Jaehyeon Ryu
    Chia-Han Chiang
    Iakov Rachinskiy
    Yi Qiang
    Dongyeol Jang
    Michael Trumpis
    Charles Wang
    Jonathan Viventi
    Hui Fang
    npj Flexible Electronics, 7
  • [32] HIGH-DENSITY MODULES SUIT MILITARY APPLICATIONS
    KRAUS, J
    DESIGN NEWS, 1983, 39 (19) : 142 - &
  • [33] Flip-chip on flex integrated power electronics modules for high-density power integration
    Bai, JG
    Lu, GQ
    Liu, XS
    IEEE TRANSACTIONS ON ADVANCED PACKAGING, 2003, 26 (01): : 54 - 59
  • [34] A HIGH-DENSITY CMOS PROCESS
    LUSCHER, RE
    DEZALDIVAR, JS
    ISSCC DIGEST OF TECHNICAL PAPERS, 1985, 28 : 260 - 261
  • [35] High-Density Integration of Functional Modules Using Monolithic 3D-IC Technology
    Panth, Shreepad
    Samadi, Kambiz
    Du, Yang
    Lim, Sung Kyu
    2013 18TH ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE (ASP-DAC), 2013, : 681 - 686
  • [36] Design, materials and process for lead-free assembly of high-density packages
    Smetana, J
    Horsley, R
    Lau, J
    Snowdon, K
    Shangguan, D
    Gleason, J
    Memis, I
    Love, D
    Dauksher, W
    Sullivan, B
    SOLDERING & SURFACE MOUNT TECHNOLOGY, 2004, 16 (01) : 53 - 62
  • [37] FULL SCHOTTKY HIGH-DENSITY 2-D INFRARED CHARGE COUPLED DETECTOR ARRAY
    KURIANSKI, JM
    THEDEN, U
    GREEN, MA
    STOREY, JWV
    SOLID-STATE ELECTRONICS, 1987, 30 (12) : 1341 - 1343
  • [38] DETECTOR FOR HIGH-DENSITY RADIATION FLUXES.
    El'darov, F.G.
    Kuz'min, G.E.
    1984, (27)
  • [39] Cathodoluminescence readout of high-density nanoparticle phase change memory
    Denisyuk, A.I.
    MacDonald, K.F.
    Zheludev, N.I.
    Optics InfoBase Conference Papers, 2008,
  • [40] Cathodoluminescence Readout of High-Density Nanoparticle Phase Change Memory
    Denisyuk, A. I.
    MacDonald, K. F.
    Zheludev, N. I.
    2008 CONFERENCE ON LASERS AND ELECTRO-OPTICS & QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE, VOLS 1-9, 2008, : 3295 - 3296