Assembly and Integration Process of the High-Density Detector Array Readout Modules for the Simons Observatory

被引:0
|
作者
Yaqiong Li
Kam Arnold
Zachary Atkins
Sarah Marie Bruno
Nicholas F. Cothard
Bradley Dober
Cody J. Duell
Shannon M. Duff
Patricio A. Gallardo
Erin Healy
Shuay-Pwu Patty Ho
Johannes Hubmayr
Brian Keating
Adrian T. Lee
Aashrita Mangu
Heather McCarrick
Michael D. Niemack
Laura Newburgh
Christopher Raum
Maria Salatino
Trevor Sasse
Maximiliano Silva-Feaver
Sara M. Simon
Suzanne Staggs
Aritoki Suzuki
Joel Ullom
Eve M. Vavagiakis
Michael R. Vissers
Yuhan Wang
Benjamin Westbrook
Edward J. Wollack
Zhilei Xu
Kaiwen Zheng
Ningfeng Zhu
机构
[1] Princeton University,
[2] University of California San Diego,undefined
[3] Cornell University,undefined
[4] University of Colorado Boulder,undefined
[5] National Institute of Standards and Technology,undefined
[6] University of California Berkeley,undefined
[7] Yale University,undefined
[8] Stanford University,undefined
[9] University of Michigan,undefined
[10] Lawrence Berkeley National Laboratory,undefined
[11] NASA Goddard Space Flight Center,undefined
[12] University of Pennsylvania,undefined
来源
关键词
CMB; Packaging; Multiplexing; RF-SQUID; Readout; TES bolometers;
D O I
暂无
中图分类号
学科分类号
摘要
The Simons Observatory will measure the cosmic microwave background temperature and polarization using a suite of new telescopes in the Atacama Desert in Chile. The Simons Observatory will use dichroic transition edge sensor (TES) bolometer arrays spanning six frequency bands from 27 to 280 GHz. The Simons Observatory will pioneer the use of a densely packed multiplexing architecture based on the microwave SQUID multiplexer (μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}mux), housing ∼2000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim \! 2000$$\end{document} microwave resonators, each coupled to a TES. The Simons Observatory aims to multiplex each array of ∼2000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim \! 2000$$\end{document} detectors with a single pair of coaxial cables and requires a multiplexing factor of ∼1000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim \! 1000$$\end{document}. The Simons Observatory cryogenic readout system is called the universal microwave multiplexing module (UMM). The UMM couples to both horn and lenslet-coupled detector arrays and is integrated into the universal focal-plane module (UFM) after being independently characterized. We present processes we have developed for highly repeatable and automated integration methods of UMMs, which will be needed for the production of the 49 UFMs required for the first stage of the Simons Observatory.
引用
收藏
页码:985 / 993
页数:8
相关论文
共 50 条
  • [21] High-density integration of carbon nanotubes via chemical self-assembly
    Hongsik Park
    Ali Afzali
    Shu-Jen Han
    George S. Tulevski
    Aaron D. Franklin
    Jerry Tersoff
    James B. Hannon
    Wilfried Haensch
    Nature Nanotechnology, 2012, 7 : 787 - 791
  • [22] High-density integration of carbon nanotubes via chemical self-assembly
    Park, Hongsik
    Afzali, Ali
    Han, Shu-Jen
    Tulevski, George S.
    Franklin, Aaron D.
    Tersoff, Jerry
    Hannon, James B.
    Haensch, Wilfried
    NATURE NANOTECHNOLOGY, 2012, 7 (12) : 787 - 791
  • [23] DEVELOPMENT OF HIGH-DENSITY READOUT FOR SILICON STRIP DETECTORS
    WALKER, JT
    PARKER, S
    HYAMS, B
    SHAPIRO, SL
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1984, 226 (01): : 200 - 203
  • [24] Fabrication and Integration of Ultrathin, High-Density, High-Frequency Ta Capacitors on Silicon for Power Modules
    Chakraborti, Parthasarathi
    Neuhart, Nathan
    Sharma, Himani
    Raj, P. M.
    Tummala, Rao R.
    Rataj, Kamil-Paul
    Schnitter, Christoph
    Gandhi, Saumya
    Stepniak, Frank
    Romig, Matt
    Lollis, Naomi
    2016 IEEE 66TH ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC), 2016, : 1958 - 1963
  • [25] Single-Readout High-Density Memristor Crossbar
    M. A. Zidan
    H. Omran
    R. Naous
    A. Sultan
    H. A. H. Fahmy
    W. D. Lu
    K. N. Salama
    Scientific Reports, 6
  • [26] Single-Readout High-Density Memristor Crossbar
    Zidan, M. A.
    Omran, H.
    Naous, R.
    Sultan, A.
    Fahmy, H. A. H.
    Lu, W. D.
    Salama, K. N.
    SCIENTIFIC REPORTS, 2016, 6
  • [27] A soft, high-density neuroelectronic array
    Seo, Kyung Jin
    Hill, Mackenna
    Ryu, Jaehyeon
    Chiang, Chia-Han
    Rachinskiy, Iakov
    Qiang, Yi
    Jang, Dongyeol
    Trumpis, Michael
    Wang, Charles
    Viventi, Jonathan
    Fang, Hui
    NPJ FLEXIBLE ELECTRONICS, 2023, 7 (01)
  • [28] High-density control modules snap in place
    不详
    MACHINE DESIGN, 1996, 68 (15) : 56 - 56
  • [29] Algorithms for high-density oligonucleotide array
    Zhou, YY
    Abagyan, R
    CURRENT OPINION IN DRUG DISCOVERY & DEVELOPMENT, 2003, 6 (03) : 339 - 345
  • [30] Fabrication of a high-density emitter array for electrospray thrusters using field emitter array process
    Inoue, Naoki
    Nagao, Masayoshi
    Murakami, Katsuhisa
    Khumpuang, Sommawan
    Hara, Shiro
    Takao, Yoshinori
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2019, 58