Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition

被引:0
|
作者
Ilya M. Flyamer
Johanna Gassler
Maxim Imakaev
Hugo B. Brandão
Sergey V. Ulianov
Nezar Abdennur
Sergey V. Razin
Leonid A. Mirny
Kikuë Tachibana-Konwalski
机构
[1] IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences,Department of Physics
[2] Vienna Biocenter (VBC),undefined
[3] Institute of Gene Biology,undefined
[4] Russian Academy of Sciences,undefined
[5] Faculty of Biology,undefined
[6] Lomonosov Moscow State University,undefined
[7] Institute for Medical Engineering and Science,undefined
[8] Massachusetts Institute of Technology (MIT),undefined
[9] Massachusetts Institute of Technology (MIT),undefined
[10] Harvard Program in Biophysics,undefined
[11] Harvard University,undefined
[12] Computational and Systems Biology Program,undefined
[13] Massachusetts Institute of Technology (MIT),undefined
[14] ,undefined
[15] †Present address: MRC Human Genetics Unit,undefined
[16] Institute of Genetics and Molecular Medicine,undefined
[17] University of Edinburgh,undefined
[18] Edinburgh EH4 2XU,undefined
[19] UK.,undefined
来源
Nature | 2017年 / 544卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Using a single-nucleus Hi-C protocol, the authors find that spatial organization of chromatin during oocyte-to-zygote transition differs between paternal and maternal nuclei within a single-cell zygote.
引用
收藏
页码:110 / 114
页数:4
相关论文
共 47 条
  • [31] Single-nucleus RNA and ATAC sequencing reveals the impact of chromatin accessibility on gene expression in Arabidopsis roots at the single-cell level
    Farmer, Andrew
    Thibivilliers, Sandra
    Ryu, Kook Hui
    Schiefelbein, John
    Libault, Marc
    MOLECULAR PLANT, 2021, 14 (03) : 372 - 383
  • [32] Automatic analysis and 3D-modelling of Hi-C data using TADbit reveals structural features of the fly chromatin colors
    Serra, Francois
    Bau, Davide
    Goodstadt, Mike
    Castillo, David
    Filion, Guillaume
    Marti-Renom, Marc A.
    PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (07)
  • [33] Canonical and single-cell Hi-C reveal distinct chromatin interaction sub-networks of mammalian transcription factors
    Xiaoyan Ma
    Daphne Ezer
    Boris Adryan
    Tim J. Stevens
    Genome Biology, 19
  • [34] SnapHiC-D: a computational pipeline to identify differential chromatin contacts from single-cell Hi-C data
    Lee, Lindsay
    Yu, Miao
    Li, Xiaoqi
    Zhu, Chenxu
    Zhang, Yanxiao
    Yu, Hongyu
    Chen, Ziyin
    Mishra, Shreya
    Ren, Bing
    Li, Yun
    Hu, Ming
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (05)
  • [35] Canonical and single-cell Hi-C reveal distinct chromatin interaction sub-networks of mammalian transcription factors
    Ma, Xiaoyan
    Ezer, Daphne
    Adryan, Boris
    Stevens, Tim J.
    GENOME BIOLOGY, 2018, 19
  • [36] Author Correction: Single-nucleus analysis of accessible chromatin in developing mouse forebrain reveals cell-type-specific transcriptional regulation
    Sebastian Preissl
    Rongxin Fang
    Hui Huang
    Yuan Zhao
    Ramya Raviram
    David U. Gorkin
    Yanxiao Zhang
    Brandon C. Sos
    Veena Afzal
    Diane E. Dickel
    Samantha Kuan
    Axel Visel
    Len A. Pennacchio
    Kun Zhang
    Bing Ren
    Nature Neuroscience, 2018, 21 : 1015 - 1015
  • [37] Hi-C analysis in patient-derived organoids reveals the impact of three-dimensional chromatin structures on pancreatic cancer transcriptional subtypes
    Kato, Hiroyuki
    Iwadate, Dosuke
    Yamamoto, Keisuke
    Fujiwara, Hiroaki
    Ijichi, Hideaki
    Fujishiro, Mitsuhiro
    Tateishi, Keisuke
    CANCER RESEARCH, 2022, 82 (22) : 47 - 48
  • [38] Model-based imputation enables improved resolution for identifying differential chromatin contacts in single-cell Hi-C data
    Shokraneh, Neda
    Andrews, Megan
    Libbrecht, Maxwell
    MACHINE LEARNING IN COMPUTATIONAL BIOLOGY, VOL 240, 2023, 240
  • [39] Reconstructing diploid 3D chromatin structures from single cell Hi-C data with a polymer-based approach
    Rothoerl, Jan
    Brems, Maarten A.
    Stevens, Tim J.
    Virnau, Peter
    FRONTIERS IN BIOINFORMATICS, 2023, 3
  • [40] Capturing cell type-specific chromatin compartment patterns by applying topic modeling to single-cell Hi-C data
    Kim, Hyeon-Jin
    Ioshikhes, Ilya
    Bonora, Giancarlo
    Ramani, Vijay
    Liu, Jie
    Qiu, Ruolan
    Lee, Choli
    Hesson, Jennifer
    Ware, Carol B.
    Shendure, Jay
    Duan, Zhijun
    Noble, William Stafford
    PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (09)