Hochschild cohomology of cubic surfaces

被引:0
|
作者
F. Butin
机构
[1] Université de Lyon,Institut Camille Jordan
[2] Université Lyon 1,undefined
[3] CNRS,undefined
[4] UMR5208,undefined
来源
Acta Mathematica Hungarica | 2015年 / 145卷
关键词
Hochschild cohomology; Hochschild homology; cubic surface; Groebner basis; algebraic resolution; quantization; star-product; 53D55; 13P10; 13D03;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the polynomial algebra C[z]:=C[z1,z2,z3]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}[{\bf z}] := \mathbb{C}[z_1, z_2, z_3]}$$\end{document} and the polynomial f:=z13+z23+z33+3qz1z2z3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f := z^{3}_{1} + z^3_2 + z^3_3 + 3qz_1z_2z_3}$$\end{document}, where q∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${q \in \mathbb{C}}$$\end{document}. Our aim is to compute the Hochschild homology and cohomology of the cubic surface Xf:={z∈C3/f(z)=0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{X}_f := \{{\bf z} \in \mathbb{C}^3/f({\bf z}) = 0\}}$$\end{document}. For explicit computations, we shall make use of a method suggested by M. Kontsevich. Then, we shall develop it in order to determine the Hochschild homology and cohomology by means of multivariate division and Groebner bases. Some formal computations with Maple are also used.
引用
收藏
页码:263 / 282
页数:19
相关论文
共 50 条
  • [41] Cocycles in relative Hochschild cohomology
    Bezyakina E.A.
    Generalov A.I.
    Journal of Mathematical Sciences, 2007, 140 (5) : 622 - 625
  • [42] The Hochschild homology and cohomology of A(1)
    Salch, A.
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (03) : 1309 - 1328
  • [43] Hochschild cohomology of generalised Grassmannians
    Belmans, Pieter
    Smirnov, Maxim
    DOCUMENTA MATHEMATICA, 2023, 28 : 11 - 53
  • [44] Hochschild cohomology and group actions
    Perry, Alexander
    MATHEMATISCHE ZEITSCHRIFT, 2021, 297 (3-4) : 1273 - 1292
  • [45] Hochschild cohomology and group actions
    Alexander Perry
    Mathematische Zeitschrift, 2021, 297 : 1273 - 1292
  • [46] Hochschild cohomology of Kontsevich graphs
    Arnal, D
    Masmoudi, M
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2002, 130 (01): : 49 - 69
  • [47] Hochschild cohomology and the modular group
    Lentner, Simon
    Mierach, Svea Nora
    Schweigert, Christoph
    Sommerhauser, Yorck
    JOURNAL OF ALGEBRA, 2018, 507 : 400 - 420
  • [48] Anticipative Chen-Souriau cohomology and Hochschild cohomology
    Léandre, R
    CONFERENCE MOSHE FLATO 1999, VOL II: QUANTIZATION, DEFORMATIONS, AND SYMMETRIES, 2000, 22 : 185 - 198
  • [49] On the Hochschild cohomology theory of A∞-algebra
    Noreldeen, Alaa Hassan
    SCIENTIFIC AFRICAN, 2019, 5
  • [50] Hochschild cohomology and stratifying ideals
    Koenig, Steffen
    Nagase, Hiroshi
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2009, 213 (05) : 886 - 891