Hochschild cohomology and group actions

被引:0
|
作者
Alexander Perry
机构
[1] Columbia University,Department of Mathematics
来源
Mathematische Zeitschrift | 2021年 / 297卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Given a finite group action on a (suitably enhanced) triangulated category linear over a field, we establish a formula for the Hochschild cohomology of the category of invariants, assuming the order of the group is coprime to the characteristic of the base field. The formula shows that the cohomology splits canonically with one summand given by the invariant subspace of the Hochschild cohomology of the original category. We also prove that Serre functors act trivially on Hochschild cohomology, and combine this with our formula to give a useful mechanism for computing the Hochschild cohomology of fractional Calabi–Yau categories.
引用
收藏
页码:1273 / 1292
页数:19
相关论文
共 50 条
  • [1] Hochschild cohomology and group actions
    Perry, Alexander
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2021, 297 (3-4) : 1273 - 1292
  • [2] Group actions on algebras and the graded Lie structure of Hochschild cohomology
    Shepler, Anne V.
    Witherspoon, Sarah
    [J]. JOURNAL OF ALGEBRA, 2012, 351 (01) : 350 - 381
  • [3] Braided Hochschild cohomology and Hopf actions
    Negron, Cris
    [J]. JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2019, 13 (01) : 1 - 33
  • [4] Hochschild cohomology and the modular group
    Lentner, Simon
    Mierach, Svea Nora
    Schweigert, Christoph
    Sommerhauser, Yorck
    [J]. JOURNAL OF ALGEBRA, 2018, 507 : 400 - 420
  • [5] The Equality of Hochschild Cohomology Group and Module Cohomology Group for Semigroup Algebras
    Nasrabadi, Ebrahim
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
  • [6] Oriented Algebras and the Hochschild Cohomology Group
    Koam, Ali N. A.
    [J]. MATHEMATICS, 2018, 6 (11):
  • [7] The Hochschild cohomology ring of a group algebra
    Siegel, SF
    Witherspoon, SJ
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1999, 79 : 131 - 157
  • [8] Derivations, Hochschild cohomology and the Gottlieb group
    Gatsinzi, J. -B
    [J]. HOMOTOPY THEORY OF FUNCTION SPACES AND RELATED TOPICS, 2010, 519 : 93 - 104
  • [9] On the first Hochschild cohomology group of an algebra
    de la Peña, JA
    Saorín, M
    [J]. MANUSCRIPTA MATHEMATICA, 2001, 104 (04) : 431 - 442
  • [10] On the first Hochschild cohomology group of an algebra
    José Antonio de la Peña
    Manuel Saorín
    [J]. manuscripta mathematica, 2001, 104 : 431 - 442