Hochschild cohomology of cubic surfaces

被引:0
|
作者
F. Butin
机构
[1] Université de Lyon,Institut Camille Jordan
[2] Université Lyon 1,undefined
[3] CNRS,undefined
[4] UMR5208,undefined
来源
Acta Mathematica Hungarica | 2015年 / 145卷
关键词
Hochschild cohomology; Hochschild homology; cubic surface; Groebner basis; algebraic resolution; quantization; star-product; 53D55; 13P10; 13D03;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the polynomial algebra C[z]:=C[z1,z2,z3]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}[{\bf z}] := \mathbb{C}[z_1, z_2, z_3]}$$\end{document} and the polynomial f:=z13+z23+z33+3qz1z2z3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f := z^{3}_{1} + z^3_2 + z^3_3 + 3qz_1z_2z_3}$$\end{document}, where q∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${q \in \mathbb{C}}$$\end{document}. Our aim is to compute the Hochschild homology and cohomology of the cubic surface Xf:={z∈C3/f(z)=0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{X}_f := \{{\bf z} \in \mathbb{C}^3/f({\bf z}) = 0\}}$$\end{document}. For explicit computations, we shall make use of a method suggested by M. Kontsevich. Then, we shall develop it in order to determine the Hochschild homology and cohomology by means of multivariate division and Groebner bases. Some formal computations with Maple are also used.
引用
收藏
页码:263 / 282
页数:19
相关论文
共 50 条