Hausdorff Dimension of Spectrum of One-Dimensional Schrödinger Operator with Sturmian Potentials

被引:0
|
作者
Qing-Hui Liu
Zhi-Ying Wen
机构
[1] Beijing Institute of Technology,Department of Computer Science and Engineering
[2] Tsinghua University,Department of Mathematics
来源
Potential Analysis | 2004年 / 20卷
关键词
one-dimensional Schrödinger operators; Sturmian sequence; Hausdorff dimension;
D O I
暂无
中图分类号
学科分类号
摘要
Let β∈(0,1) be an irrational, and [a1,a2,...] be the continued fraction expansion of β. Let Hβ be the one-dimensional Schrödinger operator with Sturmian potentials. We show that if the potential strength V>20, then the Hausdorff dimension of the spectrum σ(Hβ) is strictly great than zero for any irrational β, and is strictly less than 1 if and only if lim inf k→∞(a1a2⋅⋅⋅ak))1/k<∞.
引用
收藏
页码:33 / 59
页数:26
相关论文
共 50 条