An Upbound of Hausdorff’s Dimension of the Divergence Set of the Fractional SchröDinger Operator On Hs(ℝn)

被引:0
|
作者
Dan Li
Junfeng Li
Jie Xiao
机构
[1] Beijing Technology and Business University,School of Mathematics and Statistics
[2] Dalian University of Technology,School of Mathematical Sciences
[3] Memorial University,Department of Mathematics and Statistics
来源
Acta Mathematica Scientia | 2021年 / 41卷
关键词
The Carleson problem; divergence set; the fractional Schrödinger operator; Hausdorff dimension; Sobolev space; 42B37; 42B15;
D O I
暂无
中图分类号
学科分类号
摘要
Given n ≥ 2 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha > \tfrac{1}{2}$$\end{document}, we obtained an improved upbound of Hausdorff’s dimension of the fractional Schrödinger operator; that is, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathop {\sup }\limits_{f \in {H^s}({\mathbb{R}^n})} {\dim _H}\left\{ {x \in {{\mathbb{R}^n}}:\;\mathop {\lim }\limits_{t \to 0} {e^{{\rm{i}}t{{( - \Delta )}^\alpha }}}f(x) \ne f(x)} \right\} \le n + 1 - {{2(n + 1)s} \over n}$$\end{document} for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tfrac{n}{{2(n + 1)}} < s \le \tfrac{n}{2}$$\end{document}
引用
收藏
页码:1223 / 1249
页数:26
相关论文
共 50 条