An Upbound of Hausdorff’s Dimension of the Divergence Set of the Fractional SchröDinger Operator On Hs(ℝn)

被引:0
|
作者
Dan Li
Junfeng Li
Jie Xiao
机构
[1] Beijing Technology and Business University,School of Mathematics and Statistics
[2] Dalian University of Technology,School of Mathematical Sciences
[3] Memorial University,Department of Mathematics and Statistics
来源
Acta Mathematica Scientia | 2021年 / 41卷
关键词
The Carleson problem; divergence set; the fractional Schrödinger operator; Hausdorff dimension; Sobolev space; 42B37; 42B15;
D O I
暂无
中图分类号
学科分类号
摘要
Given n ≥ 2 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha > \tfrac{1}{2}$$\end{document}, we obtained an improved upbound of Hausdorff’s dimension of the fractional Schrödinger operator; that is, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathop {\sup }\limits_{f \in {H^s}({\mathbb{R}^n})} {\dim _H}\left\{ {x \in {{\mathbb{R}^n}}:\;\mathop {\lim }\limits_{t \to 0} {e^{{\rm{i}}t{{( - \Delta )}^\alpha }}}f(x) \ne f(x)} \right\} \le n + 1 - {{2(n + 1)s} \over n}$$\end{document} for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tfrac{n}{{2(n + 1)}} < s \le \tfrac{n}{2}$$\end{document}
引用
收藏
页码:1223 / 1249
页数:26
相关论文
共 50 条
  • [21] A numerical method for the fractional Schrödinger type equation of spatial dimension two
    Neville J. Ford
    M. Manuela Rodrigues
    Nelson Vieira
    Fractional Calculus and Applied Analysis, 2013, 16 : 454 - 468
  • [22] The Calderón problem for the fractional Schrödinger equation with drift
    Mihajlo Cekić
    Yi-Hsuan Lin
    Angkana Rüland
    Calculus of Variations and Partial Differential Equations, 2020, 59
  • [23] Levinson's Theorem for the Schrödinger Equation in One Dimension
    Shi-Hai Dong
    Zhong-Qi Ma
    International Journal of Theoretical Physics, 2000, 39 : 469 - 481
  • [24] On antisymmetric quasimodes of the Schrödinger operator in the N-particle problem
    A. E. Ruuge
    Differential Equations, 2006, 42 : 576 - 585
  • [25] Location of Maximizers of Eigenfunctions of Fractional Schrödinger’s Equations
    Anup Biswas
    Mathematical Physics, Analysis and Geometry, 2017, 20
  • [26] Spectrum of Schrödinger Hamiltonian operator with singular inverted complex and Kratzer’s molecular potentials in fractional dimensions
    Rami Ahmad El-Nabulsi
    The European Physical Journal Plus, 133
  • [27] Fractional integral related to Schrödinger operator on vanishing generalized mixed Morrey spaces
    Guliyev, Vagif S.
    Akbulut, Ali
    Celik, Suleyman
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):
  • [28] A Probabilistic Approximation of the Cauchy Problem Solution for the Schrödinger Equation with a Fractional Derivative Operator
    Platonova M.V.
    Tsykin S.V.
    Journal of Mathematical Sciences, 2020, 244 (5) : 874 - 884
  • [29] Infinitesimal form boundedness and Trudinger’s subordination for the Schrödinger operator
    V.G. Maz’ya
    I.E. Verbitsky
    Inventiones mathematicae, 2005, 162 : 81 - 136
  • [30] Eigenvalues computation by the generalized spectrum method of Schrödinger’s operator
    Ammar Khellaf
    Hamza Guebbai
    Samir Lemita
    Mohamed Zine Aissaoui
    Computational and Applied Mathematics, 2018, 37 : 5965 - 5980