Lp-Boundedness of the Wave Operator for the One Dimensional Schrödinger Operator

被引:0
|
作者
Piero D’Ancona
Luca Fanelli
机构
[1] Università “La Sapienza” di Roma,Dipartimento di Matematica
来源
关键词
Besov Space; Wave Operator; Conjugate Operator; Strichartz Estimate; Dispersive Estimate;
D O I
暂无
中图分类号
学科分类号
摘要
Given a one dimensional perturbed Schrödinger operator H =  − d2/dx2 + V(x), we consider the associated wave operators W ± , defined as the strong L2 limits \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim_{s\to\pm\infty}e^{isH}e^{-isH_{0}}$$\end{document}. We prove that W ±  are bounded operators on Lp for all 1 < p < ∞, provided \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+|x|)^{2}V(x)\in L^{1}$$\end{document}, or else \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+|x|)V(x)\in L^{1}$$\end{document} and 0 is not a resonance. For p = ∞ we obtain an estimate in terms of the Hilbert transform. Some applications to dispersive estimates for equations with variable rough coefficients are given.
引用
收藏
页码:415 / 438
页数:23
相关论文
共 50 条
  • [1] Lp-boundedness of the wave operator for the one dimensional Schrodinger operator
    D'Ancona, Piero
    Fanelli, Luca
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 268 (02) : 415 - 438
  • [2] Lp-Boundedness of Wave Operators for¶Two Dimensional Schrödinger Operators
    Kenji Yajima
    Communications in Mathematical Physics, 1999, 208 : 125 - 152
  • [3] A Remark on Lp-Boundedness of Wave Operators¶for Two Dimensional Schrödinger Operators
    Arne Jensen
    Kenji Yajima
    Communications in Mathematical Physics, 2002, 225 : 633 - 637
  • [4] The LP-boundedness of wave operators for two dimensional Schrδdinger operators with threshold singularities
    Yajima, Kenji
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2020, 74 (04) : 1169 - 1217
  • [5] Lp-boundedness of fractional maximal operator
    Kaushik, Santosh
    Chaudhary, Harindri
    Italian Journal of Pure and Applied Mathematics, 2022, 48 : 701 - 707
  • [6] Lp-boundedness of fractional maximal operator
    Kaushik, Santosh
    Chaudhary, Harindri
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (48): : 701 - 707
  • [7] Lp-boundedness of fractional maximal operator
    Kaushik, Santosh
    Chaudhary, Harindri
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, (48): : 701 - 707
  • [8] Lp-boundedness properties of variation operators in the Schrödinger setting
    J. J. Betancor
    J. C. Fariña
    E. Harboure
    L. Rodríguez-Mesa
    Revista Matemática Complutense, 2013, 26 : 485 - 534
  • [9] Lp BOUNDEDNESS OF COMMUTATOR OPERATOR ASSOCIATED WITH SCHRDINGER OPERATORS ON HEISENBERG GROUP
    李澎涛
    彭立中
    ActaMathematicaScientia, 2012, 32 (02) : 568 - 578
  • [10] One-dimensional Schrödinger operator with δ-interactions
    A. S. Kostenko
    M. M. Malamud
    Functional Analysis and Its Applications, 2010, 44 : 151 - 155