Riemann Boundary Value Problems on the Sphere in Clifford Analysis

被引:0
|
作者
Min Ku
Uwe Kähler
Daoshun Wang
机构
[1] Universidade de Aveiro,Centro de Investigação e Desenvolvimento em Matemática e Aplicações, Departamento de Matemática
[2] Tsinghua University,Department of Computer Science and Technology
来源
关键词
Clifford analysis; generalized Cauchy-Riemann operator; Hölder continuous functions; sphere; Riemann boundary value problems;
D O I
暂无
中图分类号
学科分类号
摘要
We present and study a type of Riemann boundary value problems (for short RBVPs) for polynomially monogenic functions, i.e. null solutions to polynomially generalized Cauchy-Riemann equations, over the sphere of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{n+1}}$$\end{document}. Making use of Fischer type decomposition and the Clifford calculus for polynomially monogenic functions, we obtain explicit expressions of solutions of this kind of boundary value problems over the sphere of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{n+1}}$$\end{document}. As special cases the solutions of the corresponding boundary value problems for classical polyanalytic functions and metaanalytic functions are derived respectively.
引用
收藏
页码:365 / 390
页数:25
相关论文
共 50 条
  • [21] Algebraic structures in generalized Clifford analysis and applications to boundary value problems
    Jatem, Jose
    Vanegas, Judith
    BULLETIN OF COMPUTATIONAL APPLIED MATHEMATICS, 2015, 3 (02): : 39 - 69
  • [22] Boundary and initial value problems for higher order PDES in Clifford analysis
    Obolashvili, E
    TOPICS IN ANALYSIS AND ITS APPLICATIONS, 2004, 147 : 271 - 286
  • [23] On Riemann Boundary-Value Problem for Regular Functions in Clifford Algebras
    Kuznetsov S.P.
    Mochalov V.V.
    Chuev V.P.
    Russian Mathematics, 2018, 62 (1) : 36 - 49
  • [24] ON RIEMANN BOUNDARY VALUE PROBLEM FOR REGULAR FUNCTION WITH VALUESIIN A CLIFFORD ALGEBRA
    徐振远
    ScienceBulletin, 1987, (18) : 1294 - 1295
  • [25] Riemann boundary value problem for H-2-monogenic function in Hermitian Clifford analysis
    Gu, Longfei
    Fu, Zunwei
    BOUNDARY VALUE PROBLEMS, 2014,
  • [26] Riemann boundary value problem for H-2-monogenic function in Hermitian Clifford analysis
    Longfei Gu
    Zunwei Fu
    Boundary Value Problems, 2014
  • [27] Riemann boundary value problems on the Archimedean spiral
    Fan, Shaohua
    Liu, Hua
    Nie, Zhihui
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2025, 70 (01) : 69 - 92
  • [28] Compound Riemann Hilbert Boundary Value Problems in Complex and Quaternionic Analysis
    Juan Bory Reyes
    Carlos Daniel Tamayo Castro
    Ricardo Abreu Blaya
    Advances in Applied Clifford Algebras, 2017, 27 : 977 - 991
  • [29] Compound Riemann Hilbert Boundary Value Problems in Complex and Quaternionic Analysis
    Bory Reyes, Juan
    Tamayo Castro, Carlos Daniel
    Abreu Blaya, Ricardo
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (02) : 977 - 991
  • [30] Generalized Cauchy Theorem in Clifford Analysis and Boundary Value Problems for Regular Functions
    Weiyu Luo
    Jinyuan Du
    Advances in Applied Clifford Algebras, 2017, 27 : 2531 - 2583