Compound Riemann Hilbert Boundary Value Problems in Complex and Quaternionic Analysis

被引:0
|
作者
Juan Bory Reyes
Carlos Daniel Tamayo Castro
Ricardo Abreu Blaya
机构
[1] Instituto Politécnico Nacional SEPI-ESIME-ZAC,Facultad de Informática y Matemática
[2] Universidad de Holguín,undefined
来源
关键词
Riemann Hilbert problems; Quaternionic analysis; Primary 30G35; 30E25; Secondary 30E20;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is the study of a class of compound boundary value problems for the homogeneous Dirac equation in two and three dimensions where one of the two boundary conditions (linear conjugation) is loaded. It is shown how the lack of commutativity inherent in the quaternionic product, paradoxically relaxes the conditions to guarantee the solvability of considered problems. Some examples illustrating the results are presented.
引用
收藏
页码:977 / 991
页数:14
相关论文
共 50 条