Compound Riemann Hilbert Boundary Value Problems in Complex and Quaternionic Analysis

被引:0
|
作者
Juan Bory Reyes
Carlos Daniel Tamayo Castro
Ricardo Abreu Blaya
机构
[1] Instituto Politécnico Nacional SEPI-ESIME-ZAC,Facultad de Informática y Matemática
[2] Universidad de Holguín,undefined
来源
关键词
Riemann Hilbert problems; Quaternionic analysis; Primary 30G35; 30E25; Secondary 30E20;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is the study of a class of compound boundary value problems for the homogeneous Dirac equation in two and three dimensions where one of the two boundary conditions (linear conjugation) is loaded. It is shown how the lack of commutativity inherent in the quaternionic product, paradoxically relaxes the conditions to guarantee the solvability of considered problems. Some examples illustrating the results are presented.
引用
收藏
页码:977 / 991
页数:14
相关论文
共 50 条
  • [41] Certain Case of the Riemann - Hilbert Boundary Value Problem with Peculiarities of Coefficients
    Shabalin, P. L.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2009, 9 (01): : 58 - 67
  • [42] Nonlinear Riemann-Hilbert problems with Lipschitz continuous boundary condition
    Wegert, E
    Efendiev, MA
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2000, 130 : 793 - 800
  • [43] Riemann Boundary Value Problems for Iterated Dirac Operator on the Ball in Clifford Analysis
    Ku, Min
    Fu, Yingxiong
    Uwe, Kaehler
    Paula, Cerejeiras
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2013, 7 (03) : 673 - 693
  • [44] Riemann Boundary Value Problems for Iterated Dirac Operator on the Ball in Clifford Analysis
    Min Ku
    Yingxiong Fu
    Kähler Uwe
    Cerejeiras Paula
    Complex Analysis and Operator Theory, 2013, 7 : 673 - 693
  • [45] ON HOMOGENEOUS RIEMANN BOUNDARY VALUE PROBLEMS OF HIGHER DEGREE
    路见可
    Acta Mathematica Scientia, 1997, (01) : 12 - 21
  • [46] Riemann boundary-value problems: spectral approach
    Katz, David B.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2019, 9 (04) : 2379 - 2384
  • [47] Riemann Boundary Value Problems for Monogenic Functions on the Hyperplane
    Dang, Pei
    Du, Jinyuan
    Qian, Tao
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2022, 32 (03)
  • [48] RIEMANN BOUNDARY VALUE PROBLEMS WITH GIVEN PRINCIPAL PART
    李卫峰
    杜金元
    Acta Mathematica Scientia, 2009, 29 (01) : 25 - 32
  • [49] RIEMANN BOUNDARY VALUE PROBLEMS WITH GIVEN PRINCIPAL PART
    Li Weifeng
    Du Jinyuan
    ACTA MATHEMATICA SCIENTIA, 2009, 29 (01) : 25 - 32
  • [50] Riemann Boundary Value Problems for Monogenic Functions on the Hyperplane
    Pei Dang
    Jinyuan Du
    Tao Qian
    Advances in Applied Clifford Algebras, 2022, 32