Riemann Boundary Value Problems on the Sphere in Clifford Analysis

被引:0
|
作者
Min Ku
Uwe Kähler
Daoshun Wang
机构
[1] Universidade de Aveiro,Centro de Investigação e Desenvolvimento em Matemática e Aplicações, Departamento de Matemática
[2] Tsinghua University,Department of Computer Science and Technology
来源
关键词
Clifford analysis; generalized Cauchy-Riemann operator; Hölder continuous functions; sphere; Riemann boundary value problems;
D O I
暂无
中图分类号
学科分类号
摘要
We present and study a type of Riemann boundary value problems (for short RBVPs) for polynomially monogenic functions, i.e. null solutions to polynomially generalized Cauchy-Riemann equations, over the sphere of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{n+1}}$$\end{document}. Making use of Fischer type decomposition and the Clifford calculus for polynomially monogenic functions, we obtain explicit expressions of solutions of this kind of boundary value problems over the sphere of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{n+1}}$$\end{document}. As special cases the solutions of the corresponding boundary value problems for classical polyanalytic functions and metaanalytic functions are derived respectively.
引用
收藏
页码:365 / 390
页数:25
相关论文
共 50 条
  • [1] Riemann Boundary Value Problems on the Sphere in Clifford Analysis
    Ku, Min
    Kaehler, Uwe
    Wang, Daoshun
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2012, 22 (02) : 365 - 390
  • [2] Some Riemann boundary value problems in Clifford analysis
    Guerlebeck, Klaus
    Zhang, Zhongxiang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2010, 33 (03) : 287 - 302
  • [3] Riemann Boundary Value Problems for Triharmonic Functions in Clifford Analysis
    Longfei Gu
    Jinyuan Du
    Zhongxiang Zhang
    Advances in Applied Clifford Algebras, 2013, 23 : 77 - 103
  • [4] Riemann Boundary Value Problems for Triharmonic Functions in Clifford Analysis
    Gu, Longfei
    Du, Jinyuan
    Zhang, Zhongxiang
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2013, 23 (01) : 77 - 103
  • [5] Riemann boundary value problems on half space in Clifford analysis
    Ku, Min
    Kaehler, Uwe
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (18) : 2141 - 2156
  • [6] Some Riemann boundary value problems in Clifford analysis (I)
    Zhang, Zhongxiang
    Guerlebeck, Klaus
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (07) : 991 - 1003
  • [7] Riemann Boundary Value Problems for Iterated Dirac Operator on the Ball in Clifford Analysis
    Min Ku
    Yingxiong Fu
    Kähler Uwe
    Cerejeiras Paula
    Complex Analysis and Operator Theory, 2013, 7 : 673 - 693
  • [8] Riemann Boundary Value Problems for Iterated Dirac Operator on the Ball in Clifford Analysis
    Ku, Min
    Fu, Yingxiong
    Uwe, Kaehler
    Paula, Cerejeiras
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2013, 7 (03) : 673 - 693
  • [9] A kind of Riemann boundary value problems for pseudo-harmonic functions in Clifford analysis
    Gu, Longfei
    Du, Jinyuan
    Cai, Donghan
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2014, 59 (03) : 412 - 426
  • [10] RIEMANN BOUNDARY VALUE PROBLEMS FOR SOME K-REGULAR FUNCTIONS IN CLIFFORD ANALYSIS
    姜乐
    杜金元
    Acta Mathematica Scientia, 2012, 32 (05) : 2029 - 2049