Riemann Boundary Value Problems on the Sphere in Clifford Analysis

被引:0
|
作者
Min Ku
Uwe Kähler
Daoshun Wang
机构
[1] Universidade de Aveiro,Centro de Investigação e Desenvolvimento em Matemática e Aplicações, Departamento de Matemática
[2] Tsinghua University,Department of Computer Science and Technology
来源
关键词
Clifford analysis; generalized Cauchy-Riemann operator; Hölder continuous functions; sphere; Riemann boundary value problems;
D O I
暂无
中图分类号
学科分类号
摘要
We present and study a type of Riemann boundary value problems (for short RBVPs) for polynomially monogenic functions, i.e. null solutions to polynomially generalized Cauchy-Riemann equations, over the sphere of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{n+1}}$$\end{document}. Making use of Fischer type decomposition and the Clifford calculus for polynomially monogenic functions, we obtain explicit expressions of solutions of this kind of boundary value problems over the sphere of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{n+1}}$$\end{document}. As special cases the solutions of the corresponding boundary value problems for classical polyanalytic functions and metaanalytic functions are derived respectively.
引用
收藏
页码:365 / 390
页数:25
相关论文
共 50 条