T − W relation and free energy of the Heisenberg chain at a finite temperature

被引:0
|
作者
Pengcheng Lu
Yi Qiao
Junpeng Cao
Wen-Li Yang
Kang jie Shi
Yupeng Wang
机构
[1] Northwest University,Institute of Modern Physics
[2] Chinese Academy of Sciences,Beijing National Laboratory for Condensed Matter Physics, Institute of Physics
[3] University of Chinese Academy of Sciences,School of Physical Sciences
[4] Songshan Lake Materials Laboratory,undefined
[5] Peng Huanwu Center for Fundamental Theory,undefined
[6] Shaanxi Key Laboratory for Theoretical Physics Frontiers,undefined
[7] The Yangtze River Delta Physics Research Center,undefined
关键词
Bethe Ansatz; Lattice Integrable Models;
D O I
暂无
中图分类号
学科分类号
摘要
A new nonlinear integral equation (NLIE) describing the thermodynamics of the Heisenberg spin chain is derived based on the t − W relation of the quantum transfer matrices. The free energy of the system in a magnetic field is thus obtained by solving the NLIE. This method can be generalized to other lattice quantum integrable models. Taking the SU(3)-invariant quantum spin chain as an example, we construct the corre- sponding NLIEs and compute the free energy. The present results coincide exactly with those obtained via other methods previously.
引用
收藏
相关论文
共 50 条
  • [31] Finite-time quantum quenches in the XXZ Heisenberg chain
    Schoenauer, Benedikt
    Schuricht, Dirk
    PHYSICAL REVIEW B, 2019, 100 (11)
  • [32] Quantum breathers in a finite Heisenberg spin chain with antisymmetric interactions
    Djoufack, Z. I.
    Kenfack-Jiotsa, A.
    Nguenang, J. P.
    EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (03):
  • [33] Quantum breathers in a finite Heisenberg spin chain with antisymmetric interactions
    Z. I. Djoufack
    A. Kenfack-Jiotsa
    J. P. Nguenang
    The European Physical Journal B, 2012, 85
  • [34] From asymptotic to finite Heisenberg chain - the evolution of Bethe solutions
    Caspers, WJ
    Labuz, M
    Wal, A
    Kuzma, M
    Lulek, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (20): : 5369 - 5380
  • [35] CALCULATION OF FINITE-SIZE CORRECTIONS FOR THE ANTIFERROMAGNETIC HEISENBERG CHAIN
    DORFEL, BD
    MEISSNER, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (12): : 3351 - 3361
  • [36] Quantum steering in magnetic Heisenberg models at finite temperature
    Chen, Liang
    Zhang, Ye-Qi
    EPL, 2017, 120 (06)
  • [37] ONE-DIMENSIONAL HEISENBERG MODEL AT FINITE TEMPERATURE
    TAKAHASHI, M
    PROGRESS OF THEORETICAL PHYSICS, 1971, 46 (02): : 401 - +
  • [38] Finite-temperature transport in disordered Heisenberg chains
    Karahalios, A.
    Metavitsiadis, A.
    Zotos, X.
    Gorczyca, A.
    Prelovsek, P.
    PHYSICAL REVIEW B, 2009, 79 (02)
  • [39] SPIN CORRELATIONS IN HEISENBERG LINEAR CHAIN AT INFINITE TEMPERATURE
    GERSCH, HA
    PHYSICAL REVIEW B-SOLID STATE, 1970, 1 (05): : 2270 - +
  • [40] Dynamics of magnetization at infinite temperature in a Heisenberg spin chain
    Rosenberg, E.
    Andersen, T. I.
    Samajdar, R.
    Petukhov, A.
    Hoke, J. C.
    Abanin, D.
    Bengtsson, A.
    Drozdov, I. K.
    Erickson, C.
    Klimov, P. V.
    Mi, X.
    Morvan, A.
    Neeley, M.
    Neill, C.
    Acharya, R.
    Allen, R.
    Anderson, K.
    Ansmann, M.
    Arute, F.
    Arya, K.
    Asfaw, A.
    Atalaya, J.
    Bardin, J. C.
    Bilmes, A.
    Bortoli, G.
    Bourassa, A.
    Bovaird, J.
    Brill, L.
    Broughton, M.
    Buckley, B. B.
    Buell, D. A.
    Burger, T.
    Burkett, B.
    Bushnell, N.
    Campero, J.
    Chang, H. -S.
    Chen, Z.
    Chiaro, B.
    Chik, D.
    Cogan, J.
    Collins, R.
    Conner, P.
    Courtney, W.
    Crook, A. L.
    Curtin, B.
    Debroy, D. M.
    Barba, A. Del Toro
    Demura, S.
    Di Paolo, A.
    Dunsworth, A.
    SCIENCE, 2024, 384 (6691) : 48 - 53