T − W relation and free energy of the Heisenberg chain at a finite temperature

被引:0
|
作者
Pengcheng Lu
Yi Qiao
Junpeng Cao
Wen-Li Yang
Kang jie Shi
Yupeng Wang
机构
[1] Northwest University,Institute of Modern Physics
[2] Chinese Academy of Sciences,Beijing National Laboratory for Condensed Matter Physics, Institute of Physics
[3] University of Chinese Academy of Sciences,School of Physical Sciences
[4] Songshan Lake Materials Laboratory,undefined
[5] Peng Huanwu Center for Fundamental Theory,undefined
[6] Shaanxi Key Laboratory for Theoretical Physics Frontiers,undefined
[7] The Yangtze River Delta Physics Research Center,undefined
关键词
Bethe Ansatz; Lattice Integrable Models;
D O I
暂无
中图分类号
学科分类号
摘要
A new nonlinear integral equation (NLIE) describing the thermodynamics of the Heisenberg spin chain is derived based on the t − W relation of the quantum transfer matrices. The free energy of the system in a magnetic field is thus obtained by solving the NLIE. This method can be generalized to other lattice quantum integrable models. Taking the SU(3)-invariant quantum spin chain as an example, we construct the corre- sponding NLIEs and compute the free energy. The present results coincide exactly with those obtained via other methods previously.
引用
收藏
相关论文
共 50 条
  • [21] Thermal Entanglement in Anisotropic Heisenberg XYZ Chain with External Magnetic Field at Any Finite T
    Chun-Lei Jiang
    Mao-Fa Fang
    Yao-Hua Hu
    International Journal of Theoretical Physics, 2009, 48 : 1672 - 1677
  • [22] Temperature dependence of energy gaps in spin-1/2 dimerized Heisenberg chain
    Jiang, XF
    Xing, DY
    Chen, H
    CHINESE PHYSICS LETTERS, 2002, 19 (04) : 560 - 562
  • [23] FINITE-SIZE CORRECTIONS IN THE XYZ HEISENBERG CHAIN
    MARTIN, HO
    DEVEGA, HJ
    PHYSICAL REVIEW B, 1985, 32 (09): : 5959 - 5965
  • [24] Quantum signatures of breathers in a finite Heisenberg spin chain
    Djoufack, Z. I.
    Kenfack-Jiotsa, A.
    Nguenang, J. P.
    Domngang, S.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (20)
  • [25] FREE ENERGY OF CLASSICAL HEISENBERG MODEL
    STEPHENS.RL
    WOOD, PJ
    PHYSICAL REVIEW, 1968, 173 (02): : 475 - &
  • [26] ANISOTROPIC HEISENBERG LINEAR CHAIN AT NONZERO TEMPERATURE
    HUNT, JT
    GIRARDEAU, MD
    PHYSICAL REVIEW, 1967, 160 (02): : 455 - +
  • [27] Finite-temperature scaling of spin correlations in a partially magnetized Heisenberg S=1/2 chain
    Haelg, M.
    Huevonen, D.
    Butch, N. P.
    Demmel, F.
    Zheludev, A.
    PHYSICAL REVIEW B, 2015, 92 (10)
  • [28] Finite-temperature dynamics of the spin-1/2 bond alternating Heisenberg antiferromagnetic chain
    Mikeska, H. J.
    Luckmann, C.
    PHYSICAL REVIEW B, 2006, 73 (18)
  • [29] Energy and spin diffusion in the one-dimensional classical Heisenberg spin chain at finite and infinite temperatures
    Li, Nianbei
    PHYSICAL REVIEW E, 2019, 100 (06)
  • [30] FINITE HEISENBERG CHAIN EFFECTS IN COPPER HALIDES AND TRIAZOLE COMPLEXES
    LEPINE, Y
    LAROCHELLE, V
    CAILLE, A
    THOMPSON, JL
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1979, 91 (02): : K111 - K114