Dynamics of magnetization at infinite temperature in a Heisenberg spin chain

被引:5
|
作者
Rosenberg, E. [1 ,2 ]
Andersen, T. I. [1 ]
Samajdar, R. [3 ,4 ]
Petukhov, A. [1 ]
Hoke, J. C. [1 ,5 ]
Abanin, D. [1 ]
Bengtsson, A. [1 ]
Drozdov, I. K. [1 ,6 ]
Erickson, C. [1 ]
Klimov, P. V. [1 ]
Mi, X. [1 ]
Morvan, A. [1 ]
Neeley, M. [1 ]
Neill, C. [1 ]
Acharya, R. [1 ]
Allen, R. [1 ]
Anderson, K. [1 ]
Ansmann, M. [1 ]
Arute, F. [1 ]
Arya, K. [1 ]
Asfaw, A. [1 ]
Atalaya, J. [1 ]
Bardin, J. C. [1 ,7 ]
Bilmes, A. [1 ]
Bortoli, G. [1 ]
Bourassa, A. [1 ]
Bovaird, J. [1 ]
Brill, L. [1 ]
Broughton, M. [1 ]
Buckley, B. B. [1 ]
Buell, D. A. [1 ]
Burger, T. [1 ]
Burkett, B. [1 ]
Bushnell, N. [1 ]
Campero, J. [1 ]
Chang, H. -S. [1 ]
Chen, Z. [1 ]
Chiaro, B. [1 ]
Chik, D. [1 ]
Cogan, J. [1 ]
Collins, R. [1 ]
Conner, P. [1 ]
Courtney, W. [1 ]
Crook, A. L. [1 ]
Curtin, B. [1 ]
Debroy, D. M. [1 ]
Barba, A. Del Toro [1 ]
Demura, S. [1 ]
Di Paolo, A. [1 ]
Dunsworth, A. [1 ]
机构
[1] Google Res, Mountain View, CA 94043 USA
[2] Cornell Univ, Dept Phys, Ithaca, NY USA
[3] Princeton Univ, Dept Phys, Princeton, NJ USA
[4] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ USA
[5] Stanford Univ, Dept Phys, Stanford, CA USA
[6] Univ Connecticut, Dept Phys, Storrs, CT USA
[7] Univ Massachusetts, Dept Elect & Comp Engn, Amherst, MA USA
[8] Auburn Univ, Dept Elect & Comp Engn, Auburn, AL USA
[9] Univ Technol Sydney, Fac Engn & Informat Technol, QSI, Ultimo, NSW, Australia
[10] Univ Calif Riverside, Dept Elect & Comp Engn, Riverside, CA USA
[11] Columbia Univ, Dept Chem, New York, NY USA
[12] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA USA
[13] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
关键词
EMERGENT HYDRODYNAMICS; TRANSPORT; DISTRIBUTIONS; UNIVERSALITY; MODEL;
D O I
10.1126/science.adi7877
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Understanding universal aspects of quantum dynamics is an unresolved problem in statistical mechanics. In particular, the spin dynamics of the one-dimensional Heisenberg model were conjectured as to belong to the Kardar-Parisi-Zhang (KPZ) universality class based on the scaling of the infinite-temperature spin-spin correlation function. In a chain of 46 superconducting qubits, we studied the probability distribution of the magnetization transferred across the chain's center, P(M). The first two moments of P(M) show superdiffusive behavior, a hallmark of KPZ universality. However, the third and fourth moments ruled out the KPZ conjecture and allow for evaluating other theories. Our results highlight the importance of studying higher moments in determining dynamic universality classes and provide insights into universal behavior in quantum systems.
引用
收藏
页码:48 / 53
页数:6
相关论文
共 50 条