Remarks on an integral functional driven by sub-fractional Brownian motion

被引:0
|
作者
Guangjun Shen
Litan Yan
机构
[1] East China University of Science and Technology,Department of Mathematics
[2] Anhui Normal University,Department of Mathematics
[3] Donghua University,Department of Mathematics
关键词
60G15; 60J55; 60H05; Sub-fractional Brownian motion; Local time; Self-intersection local time; -variation; Stochastic area integrals;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies the functionals \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{array}{l}{A_1}\left( {t,x} \right) = \int\limits_0^t {{1_{\left[ {0,\infty } \right)}}} \left( {\chi - S_s^H} \right)ds,\\{A_2}\left( {t,x} \right) = \int\limits_0^t {{1_{\left[ {0,\infty } \right)}}\left( {\chi - S_s^H} \right)} {s^{2H - 2}}ds,\end{array}$$\end{document} where (StH)0≤t≤T is a one-dimension sub-fractional Brownian motion with index H ∈ (0, 1). It shows that there exists a constant pH ∈ (1, 2) such that p-variation of the process Aj(t, StH) − ∫0tℒj(s, SsH)dSsH (j = 1, 2) is equal to 0 if p > pH, where ℒj, j= 1, 2, are the local time and weighted local time of SH, respectively. This extends the classical results for Brownian motion.
引用
收藏
页码:337 / 346
页数:9
相关论文
共 50 条
  • [31] Pricing geometric asian power options in the sub-fractional brownian motion environment *
    Wang, Wei
    Cai, Guanghui
    Tao, Xiangxing
    CHAOS SOLITONS & FRACTALS, 2021, 145
  • [32] Instrumental variable estimation for stochastic differential equations linear in drift parameter and driven by a sub-fractional Brownian motion
    Rao, B. L. S. Prakasa
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2018, 36 (04) : 600 - 612
  • [33] A nonparametric estimation method for stochastic differential equation with sub-fractional Brownian motion
    Bochnacka, Dorota
    Filatova, Darya
    2017 22ND INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2017, : 437 - 442
  • [34] Fuzzy simulation of European option pricing using sub-fractional Brownian motion
    Bian, Liu
    Li, Zhi
    CHAOS SOLITONS & FRACTALS, 2021, 153
  • [35] Maximum likelihood estimator for the sub-fractional Brownian motion approximated by a random walk
    Nenghui Kuang
    Huantian Xie
    Annals of the Institute of Statistical Mathematics, 2015, 67 : 75 - 91
  • [36] Maximum likelihood estimator for the sub-fractional Brownian motion approximated by a random walk
    Kuang, Nenghui
    Xie, Huantian
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2015, 67 (01) : 75 - 91
  • [37] STOCHASTIC INTEGRAL FOR NON-ADAPTED PROCESSES RELATED TO SUB-FRACTIONAL BROWNIAN MOTION WHEN H > 1/2
    Amel, Belhadj
    Abdeldjebbar, Kandouci
    Angelika, Bouchentouf Amina
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2021, 16 (02): : 165 - 176
  • [38] The fractional smoothness of integral functionals driven by Brownian motion
    Xu, Xiaoyan
    Yu, Xianye
    STATISTICS & PROBABILITY LETTERS, 2023, 193
  • [39] Asymptotics of Karhunen-Loeve Eigenvalues for Sub-Fractional Brownian Motion and Its Application
    Cai, Chun-Hao
    Hu, Jun-Qi
    Wang, Ying-Li
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [40] European Option Pricing under Sub-Fractional Brownian Motion Regime in Discrete Time
    Guo, Zhidong
    Liu, Yang
    Dai, Linsong
    FRACTAL AND FRACTIONAL, 2024, 8 (01)