The fractional smoothness of integral functionals driven by Brownian motion

被引:0
|
作者
Xu, Xiaoyan [1 ]
Yu, Xianye [2 ]
机构
[1] Sun Yat Sen Univ, Sch Math, Guangzhou 510275, Guangdong, Peoples R China
[2] Zhejiang Gongshang Univ, Sch Stat & Math, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国博士后科学基金;
关键词
Smoothness; Malliavin calculus; Brownian local time; Cauchy?s principal value; Marchaud fractional derivative; TIMES;
D O I
10.1016/j.spl.2022.109717
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the fractional smoothness of integral functionals driven by Brownian motion. By using Yamada identities, we also obtain the fractional smoothness of Hilbert transform and fractional derivative with respect to Brownian local time, which recovers the results in Eddahbi et al. (2000).(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Limit theorems for a class of integral functionals driven by fractional Brownian motion
    Xia, Xiaoyu
    Yan, Litan
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (03) : 583 - 601
  • [2] Chaotic expansion and smoothness of some functionals of the fractional Brownian motion
    Eddahbi, M
    Vives, J
    [J]. JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2003, 43 (02): : 349 - 368
  • [3] An integral functional driven by fractional Brownian motion
    Sun, Xichao
    Yan, Litan
    Yu, Xianye
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (07) : 2249 - 2285
  • [4] Limit theorems related to the integral functionals of one dimensional fractional Brownian motion
    Yu, Xianye
    Zhang, Mingbo
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (24) : 5908 - 5916
  • [5] SMOOTHNESS OF THE LAW OF THE SUPREMUM OF THE FRACTIONAL BROWNIAN MOTION
    Zadi, Noureddine Lanjri
    Nualart, David
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2003, 8 : 102 - 111
  • [6] ON ONE INTEGRAL REPRESENTATION OF FUNCTIONALS OF BROWNIAN MOTION
    Glonti, O. A.
    Purtukhia, O. G.
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 2017, 61 (01) : 133 - 139
  • [7] Revisiting integral functionals of geometric Brownian motion
    Boguslavskaya, Elena
    Vostrikova, Lioudmila
    [J]. STATISTICS & PROBABILITY LETTERS, 2020, 165
  • [8] Remarks on an integral functional driven by sub-fractional Brownian motion
    Shen, Guangjun
    Yan, Litan
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2011, 40 (03) : 337 - 346
  • [9] p-variation of an integral functional driven by fractional Brownian motion
    Yan, Litan
    Yang, Xiangfeng
    Lu, Yunsheng
    [J]. STATISTICS & PROBABILITY LETTERS, 2008, 78 (09) : 1148 - 1157
  • [10] Weak convergence of integral functionals of random walks weakly convergent to fractional Brownian motion
    Mishura Yu.S.
    Rode S.H.
    [J]. Ukrainian Mathematical Journal, 2007, 59 (8) : 1155 - 1162