Remarks on an integral functional driven by sub-fractional Brownian motion

被引:0
|
作者
Guangjun Shen
Litan Yan
机构
[1] East China University of Science and Technology,Department of Mathematics
[2] Anhui Normal University,Department of Mathematics
[3] Donghua University,Department of Mathematics
关键词
60G15; 60J55; 60H05; Sub-fractional Brownian motion; Local time; Self-intersection local time; -variation; Stochastic area integrals;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies the functionals \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{array}{l}{A_1}\left( {t,x} \right) = \int\limits_0^t {{1_{\left[ {0,\infty } \right)}}} \left( {\chi - S_s^H} \right)ds,\\{A_2}\left( {t,x} \right) = \int\limits_0^t {{1_{\left[ {0,\infty } \right)}}\left( {\chi - S_s^H} \right)} {s^{2H - 2}}ds,\end{array}$$\end{document} where (StH)0≤t≤T is a one-dimension sub-fractional Brownian motion with index H ∈ (0, 1). It shows that there exists a constant pH ∈ (1, 2) such that p-variation of the process Aj(t, StH) − ∫0tℒj(s, SsH)dSsH (j = 1, 2) is equal to 0 if p > pH, where ℒj, j= 1, 2, are the local time and weighted local time of SH, respectively. This extends the classical results for Brownian motion.
引用
收藏
页码:337 / 346
页数:9
相关论文
共 50 条
  • [21] Mixed sub-fractional Brownian motionD
    Zili, Mounir
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2014, 22 (03) : 163 - 178
  • [22] The generalized Bouleau-Yor identity for a sub-fractional Brownian motion
    Yan LiTan
    He Kun
    Chen Chao
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (10) : 2089 - 2116
  • [23] Parameter estimations for the sub-fractional Brownian motion with drift at discrete observation
    Kuang, Nenghui
    Liu, Bingquan
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2015, 29 (04) : 778 - 789
  • [24] The generalized Bouleau-Yor identity for a sub-fractional Brownian motion
    YAN LiTan
    HE Kun
    CHEN Chao
    ScienceChina(Mathematics), 2013, 56 (10) : 2089 - 2116
  • [25] Asymptotic behavior of weighted cubic variation of sub-fractional brownian motion
    Kuang, Nenghui
    Xie, Huantian
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (01) : 215 - 229
  • [26] The generalized Bouleau-Yor identity for a sub-fractional Brownian motion
    LiTan Yan
    Kun He
    Chao Chen
    Science China Mathematics, 2013, 56 : 2089 - 2116
  • [27] p-variation of an integral functional driven by fractional Brownian motion
    Yan, Litan
    Yang, Xiangfeng
    Lu, Yunsheng
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (09) : 1148 - 1157
  • [28] REMARKS ON SUB-FRACTIONAL BESSEL PROCESSES
    Shen Guangjun
    Chen Chao
    Yam Litan
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (05) : 1860 - 1876
  • [29] REMARKS ON SUB-FRACTIONAL BESSEL PROCESSES
    申广君
    陈超
    闫理坦
    Acta Mathematica Scientia, 2011, 31 (05) : 1860 - 1876
  • [30] Pricing geometric asian power options in the sub-fractional brownian motion environment
    WANG, W.E.I.
    CAI, GUANGHUI
    TAO, XIANGXING
    Chaos, Solitons and Fractals, 2021, 145