Congruences for overpartitions with restricted odd differences

被引:0
|
作者
M. S. Mahadeva Naika
D. S. Gireesh
机构
[1] Bangalore University,Department of Mathematics
[2] Central College Campus,Department of Mathematics
[3] M. S. Ramaiah University of Applied Sciences,undefined
来源
Afrika Matematika | 2019年 / 30卷
关键词
Partitions; Overpartitions; Congruences; 05A17; 11P82;
D O I
暂无
中图分类号
学科分类号
摘要
In recent work, Bringmann et al. used q-difference equations to compute a two-variable q-hypergeometric generating function for the number of overpartitions where (i) the difference between two successive parts may be odd only if the larger of the two is overlined, and (ii) if the smallest part is odd then it is overlined, given by t¯(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{t}(n)$$\end{document}. They also established the two-variable generating function for the same overpartitions where (i) consecutive parts differ by a multiple of (k+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k+1)$$\end{document} unless the larger of the two is overlined, and (ii) the smallest part is overlined unless it is divisible by k+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k+1$$\end{document}, enumerated by t¯(k)(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{t}^{(k)}(n)$$\end{document}. As an application they proved that t¯(n)≡0(mod3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{t}(n)\equiv 0\pmod {3}$$\end{document} if n is not a square. In this paper, we extend the study of congruence properties of t¯(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{t}(n)$$\end{document}, and we prove congruences modulo 3 and 6 for t¯(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{t}(n)$$\end{document}, congruences modulo 2 and 4 for t¯(3)(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{t}^{(3)}(n)$$\end{document} and t¯(7)(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{t}^{(7)}(n)$$\end{document}, congruences modulo 4 and 5 for t¯(4)(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{t}^{(4)}(n)$$\end{document}, and congruences modulo 3, 6 and 12 for t¯(8)(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{t}^{(8)}(n)$$\end{document}.
引用
收藏
页码:1 / 21
页数:20
相关论文
共 50 条
  • [41] Arithmetic properties of overpartitions into odd parts
    Hirschhorn, Michael D.
    Sellers, James A.
    ANNALS OF COMBINATORICS, 2006, 10 (03) : 353 - 367
  • [42] Arithmetic Properties of Overpartitions into Odd Parts
    Michael D. Hirschhorn
    James A. Sellers
    Annals of Combinatorics, 2006, 10 : 353 - 367
  • [43] A characterization of congruences modulo 4 on a SPT function of overpartitions
    Olivia X. M. Yao
    The Ramanujan Journal, 2023, 60 : 795 - 808
  • [44] Ramanujan-type congruences for overpartitions modulo 5
    Chen, William Y. C.
    Sun, Lisa H.
    Wang, Rong-Hua
    Zhang, Li
    JOURNAL OF NUMBER THEORY, 2015, 148 : 62 - 72
  • [45] Ramanujan-type congruences for overpartitions modulo 16
    Chen, William Y. C.
    Hou, Qing-Hu
    Sun, Lisa H.
    Zhang, Li
    RAMANUJAN JOURNAL, 2016, 40 (02): : 311 - 322
  • [46] New Ramanujan type congruences modulo 5 for overpartitions
    Dou, Donna Q. J.
    Lin, Bernard L. S.
    RAMANUJAN JOURNAL, 2017, 44 (02): : 401 - 410
  • [47] New density results and congruences for Andrews' singular overpartitions
    Singh, Ajit
    Barman, Rupam
    JOURNAL OF NUMBER THEORY, 2021, 229 : 328 - 341
  • [48] New Ramanujan type congruences modulo 5 for overpartitions
    Donna Q. J. Dou
    Bernard L. S. Lin
    The Ramanujan Journal, 2017, 44 : 401 - 410
  • [49] Ramanujan-type congruences for overpartitions modulo 16
    William Y. C. Chen
    Qing-Hu Hou
    Lisa H. Sun
    Li Zhang
    The Ramanujan Journal, 2016, 40 : 311 - 322
  • [50] Congruences for [j,k] - overpartitions with even parts distinct
    Naika, M. S. Mahadeva
    Harishkumar, T.
    Veeranayaka, T. N.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (02):