Congruences for [j,k] - overpartitions with even parts distinct

被引:0
|
作者
Naika, M. S. Mahadeva [1 ]
Harishkumar, T. [1 ]
Veeranayaka, T. N. [1 ]
机构
[1] Bengaluru City Univ, Dept Math, Cent Coll Campus, Bengaluru, Karnataka, India
来源
关键词
Congruences; Overpartitions; j; k]-overpartitions; ARITHMETIC PROPERTIES;
D O I
10.1007/s40590-022-00436-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (ped) over bar (j,k) (n) denote the number of [j, k]-overpartitions of a positive integer n with even parts distinct and the first occurrence of each distinct part congruent to j modulo k may be overlined. In this work, we have establish many infinite families of congruences modulo powers of 2 for (ped) over bar (3,3) (n) and (ped) over bar (3,6) (n). For example, for any n >= 0 and alpha, beta >= 0, (ped) over bar (3,6) (8 center dot 3(4 alpha+2) center dot 5(2 beta+2)n + c(1) center dot 3(4 alpha+1) center dot 5(2 beta+1)) 0 (mod 64), where c(1) is an element of {23, 47, 71, 119}.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] New congruences for [j,k]-overpartitions with even parts distinct
    Robson da Silva
    Marcelo C. Gama
    Boletín de la Sociedad Matemática Mexicana, 2025, 31 (1)
  • [2] On some infinite families of congruences for [j, k]-partitions into even parts distinct
    Naika, M. S. Mahadeva
    Harishkumar, T.
    Veeranayaka, T. N.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2021, 52 (04): : 1038 - 1054
  • [3] On some infinite families of congruences for [j, k]-partitions into even parts distinct
    M. S. Mahadeva Naika
    T. Harishkumar
    T. N. Veeranayaka
    Indian Journal of Pure and Applied Mathematics, 2021, 52 : 1038 - 1054
  • [4] Congruences for the number of k-tuple partitions with distinct even parts
    Chen, Shi-Chao
    DISCRETE MATHEMATICS, 2013, 313 (15) : 1565 - 1568
  • [5] Congruences for the number of partitions and bipartitions with distinct even parts
    Dai, Haobo
    DISCRETE MATHEMATICS, 2015, 338 (03) : 133 - 138
  • [6] Identities for overpartitions with even smallest parts
    Fang, Min-Joo
    Lovejoy, Jeremy
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (07) : 2023 - 2033
  • [7] Congruences for l-regular overpartitions into odd parts
    Shivashankar, C.
    Gireesh, D. S.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (01):
  • [8] Congruences modulo 16, 32 and 64 for bipartitions with distinct even parts
    Liu, Eric H.
    Yao, Olivia X. M.
    Zhao, Tao Yan
    ARS COMBINATORIA, 2018, 140 : 301 - 310
  • [9] Congruences for the number of 4-tuple partitions with distinct even parts
    Dai, Haobo
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2014, 10 (08) : 2037 - 2043
  • [10] Congruences for Andrews' (k, i)-singular overpartitions
    Aricheta, Victor Manuel
    RAMANUJAN JOURNAL, 2017, 43 (03): : 535 - 549