On some infinite families of congruences for [j, k]-partitions into even parts distinct

被引:0
|
作者
Naika, M. S. Mahadeva [1 ]
Harishkumar, T. [2 ]
Veeranayaka, T. N. [2 ]
机构
[1] Bengaluru City Univ, Dept Math, Cent Coll Campus, Bengaluru 560001, Karnataka, India
[2] Bangalore Univ, Dept Math, Cent Coll Campus, Bengaluru 560001, Karnataka, India
来源
关键词
Congruences; Partitions with even parts distinct; j k]-partitions; ARITHMETIC PROPERTIES; PARTITIONS; BIPARTITIONS; NUMBER;
D O I
10.1007/s13226-021-00046-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we define the partition function ped(j,k)(n), the number of [j, k]-partitions of n into even parts distinct, where none of the parts are congruent to j (mod k) (where k > j >= 1). We obtain many infinite families of congruences modulo powers of 2 for ped(3,6)(n) and congruences modulo powers of 2 and 3 for ped(9,18)(n). For example, for all n >= 0 and alpha, beta >= 0, ped(9),(18) (2 . 3(4 alpha+4) . 7(2 beta+1) (7n + s) + 11 . 3(4 alpha+3) . 7(2 beta+1) + 1/4) equivalent to 0 (mod 16), where s = 0, 2, 3, 4, 5, 6.
引用
收藏
页码:1038 / 1054
页数:17
相关论文
共 50 条
  • [1] On some infinite families of congruences for [j, k]-partitions into even parts distinct
    M. S. Mahadeva Naika
    T. Harishkumar
    T. N. Veeranayaka
    Indian Journal of Pure and Applied Mathematics, 2021, 52 : 1038 - 1054
  • [2] New infinite families of congruences modulo 8 for partitions with even parts distinct
    Xia, Ernest X. W.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (04):
  • [3] Congruences for [j,k] - overpartitions with even parts distinct
    Naika, M. S. Mahadeva
    Harishkumar, T.
    Veeranayaka, T. N.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (02):
  • [4] Congruences for the number of k-tuple partitions with distinct even parts
    Chen, Shi-Chao
    DISCRETE MATHEMATICS, 2013, 313 (15) : 1565 - 1568
  • [5] Infinite Families of Congruences for 3-Regular Partitions with Distinct Odd Parts
    Nipen Saikia
    Communications in Mathematics and Statistics, 2020, 8 : 443 - 451
  • [7] New congruences for [j,k]-overpartitions with even parts distinct
    da Silva, Robson
    Gama, Marcelo C.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2025, 31 (01):
  • [8] Congruences for the number of partitions and bipartitions with distinct even parts
    Dai, Haobo
    DISCRETE MATHEMATICS, 2015, 338 (03) : 133 - 138
  • [9] Infinite families of infinite families of congruences for k-regular partitions
    Carlson, Rowland
    Webb, John J.
    RAMANUJAN JOURNAL, 2014, 33 (03): : 329 - 337
  • [10] Infinite families of infinite families of congruences for k-regular partitions
    Rowland Carlson
    John J. Webb
    The Ramanujan Journal, 2014, 33 : 329 - 337