Congruences for overpartitions with restricted odd differences

被引:0
|
作者
M. S. Mahadeva Naika
D. S. Gireesh
机构
[1] Bangalore University,Department of Mathematics
[2] Central College Campus,Department of Mathematics
[3] M. S. Ramaiah University of Applied Sciences,undefined
来源
Afrika Matematika | 2019年 / 30卷
关键词
Partitions; Overpartitions; Congruences; 05A17; 11P82;
D O I
暂无
中图分类号
学科分类号
摘要
In recent work, Bringmann et al. used q-difference equations to compute a two-variable q-hypergeometric generating function for the number of overpartitions where (i) the difference between two successive parts may be odd only if the larger of the two is overlined, and (ii) if the smallest part is odd then it is overlined, given by t¯(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{t}(n)$$\end{document}. They also established the two-variable generating function for the same overpartitions where (i) consecutive parts differ by a multiple of (k+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k+1)$$\end{document} unless the larger of the two is overlined, and (ii) the smallest part is overlined unless it is divisible by k+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k+1$$\end{document}, enumerated by t¯(k)(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{t}^{(k)}(n)$$\end{document}. As an application they proved that t¯(n)≡0(mod3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{t}(n)\equiv 0\pmod {3}$$\end{document} if n is not a square. In this paper, we extend the study of congruence properties of t¯(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{t}(n)$$\end{document}, and we prove congruences modulo 3 and 6 for t¯(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{t}(n)$$\end{document}, congruences modulo 2 and 4 for t¯(3)(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{t}^{(3)}(n)$$\end{document} and t¯(7)(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{t}^{(7)}(n)$$\end{document}, congruences modulo 4 and 5 for t¯(4)(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{t}^{(4)}(n)$$\end{document}, and congruences modulo 3, 6 and 12 for t¯(8)(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{t}^{(8)}(n)$$\end{document}.
引用
下载
收藏
页码:1 / 21
页数:20
相关论文
共 50 条
  • [21] NEW CONGRUENCES MODULO 5 FOR OVERPARTITIONS
    Zhao, Tao Yan
    Jin, Lily J.
    COLLOQUIUM MATHEMATICUM, 2016, 145 (02) : 285 - 290
  • [22] Congruences modulo 9 for singular overpartitions
    Shen, Erin Y. Y.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (03) : 717 - 724
  • [23] New congruences for Andrews' singular overpartitions
    Ahmed, Zakir
    Baruah, Nayandeep Deka
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (07) : 2247 - 2264
  • [24] Explicit congruences modulo 2048 for overpartitions
    Xue, Fanggang
    Yao, Olivia X. M.
    RAMANUJAN JOURNAL, 2021, 54 (01): : 63 - 77
  • [25] Congruences modulo 64 and 1024 for overpartitions
    Yao, Olivia X. M.
    RAMANUJAN JOURNAL, 2018, 46 (01): : 1 - 18
  • [26] Congruences modulo 9 and 27 for overpartitions
    Ernest X. W. Xia
    The Ramanujan Journal, 2017, 42 : 301 - 323
  • [27] Congruences modulo 64 and 1024 for overpartitions
    Olivia X. M. Yao
    The Ramanujan Journal, 2018, 46 : 1 - 18
  • [28] Congruences modulo 9 and 27 for overpartitions
    Xia, Ernest X. W.
    RAMANUJAN JOURNAL, 2017, 42 (02): : 301 - 323
  • [29] Congruences and asymptotics of Andrews' singular overpartitions
    Chen, Shi-Chao
    JOURNAL OF NUMBER THEORY, 2016, 164 : 343 - 358
  • [30] Explicit congruences modulo 2048 for overpartitions
    Fanggang Xue
    Olivia X. M. Yao
    The Ramanujan Journal, 2021, 54 : 63 - 77