Congruences for overpartitions with restricted odd differences

被引:0
|
作者
M. S. Mahadeva Naika
D. S. Gireesh
机构
[1] Bangalore University,Department of Mathematics
[2] Central College Campus,Department of Mathematics
[3] M. S. Ramaiah University of Applied Sciences,undefined
来源
Afrika Matematika | 2019年 / 30卷
关键词
Partitions; Overpartitions; Congruences; 05A17; 11P82;
D O I
暂无
中图分类号
学科分类号
摘要
In recent work, Bringmann et al. used q-difference equations to compute a two-variable q-hypergeometric generating function for the number of overpartitions where (i) the difference between two successive parts may be odd only if the larger of the two is overlined, and (ii) if the smallest part is odd then it is overlined, given by t¯(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{t}(n)$$\end{document}. They also established the two-variable generating function for the same overpartitions where (i) consecutive parts differ by a multiple of (k+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k+1)$$\end{document} unless the larger of the two is overlined, and (ii) the smallest part is overlined unless it is divisible by k+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k+1$$\end{document}, enumerated by t¯(k)(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{t}^{(k)}(n)$$\end{document}. As an application they proved that t¯(n)≡0(mod3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{t}(n)\equiv 0\pmod {3}$$\end{document} if n is not a square. In this paper, we extend the study of congruence properties of t¯(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{t}(n)$$\end{document}, and we prove congruences modulo 3 and 6 for t¯(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{t}(n)$$\end{document}, congruences modulo 2 and 4 for t¯(3)(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{t}^{(3)}(n)$$\end{document} and t¯(7)(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{t}^{(7)}(n)$$\end{document}, congruences modulo 4 and 5 for t¯(4)(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{t}^{(4)}(n)$$\end{document}, and congruences modulo 3, 6 and 12 for t¯(8)(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{t}^{(8)}(n)$$\end{document}.
引用
收藏
页码:1 / 21
页数:20
相关论文
共 50 条
  • [1] Congruences for overpartitions with restricted odd differences
    Naika, M. S. Mahadeva
    Gireesh, D. S.
    [J]. AFRIKA MATEMATIKA, 2019, 30 (1-2) : 1 - 21
  • [2] Congruences for overpartitions with restricted odd differences
    Hirschhorn, Michael D.
    Sellers, James A.
    [J]. RAMANUJAN JOURNAL, 2020, 53 (01): : 167 - 180
  • [3] Congruences for overpartitions with restricted odd differences
    Michael D. Hirschhorn
    James A. Sellers
    [J]. The Ramanujan Journal, 2020, 53 : 167 - 180
  • [4] Ramanujan congruences for overpartitions with restricted odd differences
    Hanson, Michael
    Smith, Jeremiah
    [J]. RESEARCH IN NUMBER THEORY, 2023, 9 (01)
  • [5] Ramanujan congruences for overpartitions with restricted odd differences
    Michael Hanson
    Jeremiah Smith
    [J]. Research in Number Theory, 2023, 9
  • [6] INFINITE FAMILIES OF CONGRUENCES FOR OVERPARTITIONS WITH RESTRICTED ODD DIFFERENCES
    Lin, Bernard L. S.
    Liu, Jian
    Wang, Andrew Y. Z.
    Xia, Jiejuan
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 102 (01) : 59 - 66
  • [7] Overpartitions with restricted odd differences
    Bringmann, Kathrin
    Dousse, Jehanne
    Lovejoy, Jeremy
    Mahlburg, Karl
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (03):
  • [8] Congruences for two restricted overpartitions
    Chern, Shane
    Hao, Li-Jun
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2019, 129 (03):
  • [9] Congruences for two restricted overpartitions
    Shane Chern
    Li-Jun Hao
    [J]. Proceedings - Mathematical Sciences, 2019, 129
  • [10] Congruences for l-regular overpartitions into odd parts
    Shivashankar, C.
    Gireesh, D. S.
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (01):