Congruences for overpartitions with restricted odd differences

被引:0
|
作者
Michael D. Hirschhorn
James A. Sellers
机构
[1] UNSW,School of Mathematics and Statistics
[2] Penn State University,Department of Mathematics
来源
The Ramanujan Journal | 2020年 / 53卷
关键词
Congruences; Overpartitions; Restricted odd differences; 05A17; 11P83;
D O I
暂无
中图分类号
学科分类号
摘要
In a recent work, Bringmann, Dousse, Lovejoy, and Mahlburg defined the function t¯(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{t}(n)$$\end{document} to be the number of overpartitions of weight n where (i) the difference between two successive parts may be odd only if the larger part is overlined and (ii) if the smallest part is odd, then it is overlined. In their work, they proved that t¯(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{t}(n)$$\end{document} satisfies an elegant congruence modulo 3, namely, for n≥1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 1,$$\end{document}[graphic not available: see fulltext]In this work, using elementary tools for manipulating generating functions, we prove that t¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{t}$$\end{document} satisfies a corresponding parity result. We prove that, for all n≥1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 1,$$\end{document}t¯(2n)≡1(mod2)ifn=(3k+1)2for some integerk,0(mod2)otherwise.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \overline{t}(2n) \equiv {\left\{ \begin{array}{ll} 1 \pmod {2} &{} \text{ if } n =(3k + 1)^2 \text { for some integer } k, \\ 0 \pmod {2} &{} \text{ otherwise. } \end{array}\right. } \end{aligned}$$\end{document}We also provide a truly elementary proof of the mod 3 characterization of Bringmann et al., as well as a number of additional congruences satisfied by t¯(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{t}(n)$$\end{document} for various moduli.
引用
收藏
页码:167 / 180
页数:13
相关论文
共 50 条
  • [1] Congruences for overpartitions with restricted odd differences
    Naika, M. S. Mahadeva
    Gireesh, D. S.
    [J]. AFRIKA MATEMATIKA, 2019, 30 (1-2) : 1 - 21
  • [2] Congruences for overpartitions with restricted odd differences
    Hirschhorn, Michael D.
    Sellers, James A.
    [J]. RAMANUJAN JOURNAL, 2020, 53 (01): : 167 - 180
  • [3] Congruences for overpartitions with restricted odd differences
    M. S. Mahadeva Naika
    D. S. Gireesh
    [J]. Afrika Matematika, 2019, 30 : 1 - 21
  • [4] Ramanujan congruences for overpartitions with restricted odd differences
    Hanson, Michael
    Smith, Jeremiah
    [J]. RESEARCH IN NUMBER THEORY, 2023, 9 (01)
  • [5] Ramanujan congruences for overpartitions with restricted odd differences
    Michael Hanson
    Jeremiah Smith
    [J]. Research in Number Theory, 2023, 9
  • [6] INFINITE FAMILIES OF CONGRUENCES FOR OVERPARTITIONS WITH RESTRICTED ODD DIFFERENCES
    Lin, Bernard L. S.
    Liu, Jian
    Wang, Andrew Y. Z.
    Xia, Jiejuan
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 102 (01) : 59 - 66
  • [7] Overpartitions with restricted odd differences
    Bringmann, Kathrin
    Dousse, Jehanne
    Lovejoy, Jeremy
    Mahlburg, Karl
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (03):
  • [8] Congruences for two restricted overpartitions
    Chern, Shane
    Hao, Li-Jun
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2019, 129 (03):
  • [9] Congruences for two restricted overpartitions
    Shane Chern
    Li-Jun Hao
    [J]. Proceedings - Mathematical Sciences, 2019, 129
  • [10] Congruences for l-regular overpartitions into odd parts
    Shivashankar, C.
    Gireesh, D. S.
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (01):