The Fractional Fourier Transform and Harmonic Oscillation

被引:0
|
作者
M. Alper Kutay
Haldun M. Ozaktas
机构
[1] The National Research Institute of Electronics and Cryptology (TUBITAK – UEKAE),The Scientific and Technical Research Council of Turkey
[2] Bilkent University,Department of Electrical Engineering
来源
Nonlinear Dynamics | 2002年 / 29卷
关键词
fractional Fourier transform; harmonic oscillation; Green's function; phase space;
D O I
暂无
中图分类号
学科分类号
摘要
The ath-order fractional Fourier transform is a generalization ofthe ordinary Fourier transform such that the zeroth-order fractionalFourier transform operation is equal to the identity operation and thefirst-order fractional Fourier transform is equal to the ordinaryFourier transform. This paper discusses the relationship of thefractional Fourier transform to harmonic oscillation; both correspondto rotation in phase space. Various important properties of thetransform are discussed along with examples of commontransforms. Some of the applications of the transform are brieflyreviewed.
引用
收藏
页码:157 / 172
页数:15
相关论文
共 50 条
  • [1] The fractional Fourier transform and harmonic oscillation
    Kutay, MA
    Ozaktas, HM
    [J]. NONLINEAR DYNAMICS, 2002, 29 (1-4) : 157 - 172
  • [2] Adaptive harmonic fractional Fourier transform
    Zhang, F
    Chen, YQ
    Bi, G
    [J]. IEEE SIGNAL PROCESSING LETTERS, 1999, 6 (11) : 281 - 283
  • [3] Adaptive harmonic fractional Fourier transform
    Zhang, F
    Chen, YQ
    Bi, GA
    [J]. ISCAS 2000: IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - PROCEEDINGS, VOL V: EMERGING TECHNOLOGIES FOR THE 21ST CENTURY, 2000, : 45 - 48
  • [4] The Fractional Clifford Fourier Transform Based on a Deformed Hamiltonian for the Harmonic Oscillator
    Bernstein, Swanhild
    Faustino, Nelson
    [J]. INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019, 2020, 2293
  • [5] The Use of Fractional Fourier Transform for the Extraction of Overlapped Harmonic Chirp Signals
    Arif, Muhammad
    Shaikh, Ayazahmed
    Qureshi, Imran Ali
    [J]. MEHRAN UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, 2014, 33 (02) : 189 - 198
  • [6] PULSE COMPRESSION OF HARMONIC CHIRP SIGNALS USING THE FRACTIONAL FOURIER TRANSFORM
    Arif, M.
    Cowell, D. M. J.
    Freear, S.
    [J]. ULTRASOUND IN MEDICINE AND BIOLOGY, 2010, 36 (06): : 949 - 956
  • [7] Extraction of Spectrally Overlapped Second Harmonic using the Fractional Fourier Transform
    Harput, Sevan
    Arif, Muhammad
    McLaughlan, James
    Smith, Peter R.
    Cowell, David M. J.
    Freear, Steven
    [J]. 2013 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2013, : 37 - 40
  • [8] The discrete harmonic oscillator, Harper's equation, and the discrete fractional Fourier transform
    Barker, L
    Candan, C
    Hakioglu, T
    Kutay, MA
    Ozaktas, HM
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (11): : 2209 - 2222
  • [9] Extraction of an Overlapped Second Harmonic Chirp Component using the Fractional Fourier Transform
    Arif, Muhammad
    Harput, Sevan
    Smith, Peter R.
    Cowell, David M. J.
    Freear, Steven
    [J]. 2011 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2011, : 405 - 408
  • [10] The scale of the Fourier transform: a point of view of the fractional Fourier transform
    Jimenez, C. J.
    Vilardy, J. M.
    Salinas, S.
    Mattos, L.
    Torres, C.
    [J]. VIII INTERNATIONAL CONGRESS OF ENGINEERING PHYSICS, 2017, 792