The scale of the Fourier transform: a point of view of the fractional Fourier transform

被引:0
|
作者
Jimenez, C. J. [1 ]
Vilardy, J. M. [2 ]
Salinas, S. [3 ]
Mattos, L. [4 ]
Torres, C. [4 ]
机构
[1] Univ La Guajira, Grp GIMA, Riohacha, La Guajira, Colombia
[2] Univ La Guajira, Grp GIFES, Fac Engn, Riohacha, La Guajira, Colombia
[3] Univ Zulia, CIMA, Maracaibo, Venezuela
[4] Univ Popular Cesar, Dept Elect Engn, Grp Opt & Informat, Valledupar, Cesar, Colombia
关键词
D O I
10.1088/1742-6596/792/1/012044
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper using the Fourier transform of order fractional, the ray transfer matrix for the symmetrical optical systems type ABCD and the formulae by Collins for the diffraction, we obtain explicitly the expression for scaled Fourier transform conventional; this result is the great importance in optical signal processing because it offers the possibility of scaling the size of output the Fourier distribution of the system, only by manipulating the distance of the diffraction object toward the thin lens, this research also emphasizes on practical limits when a finite spherical converging lens aperture is used. Digital simulation was carried out using the numerical platform of Matlab 7.1.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Biospeckle: fractional Fourier transform point of view
    Lasso, William
    Perez Calderon, Eduardo A.
    Castillo Serrano, Nelali P.
    Diaz M, Leonardo
    Torres, Cesar O.
    [J]. 8TH IBEROAMERICAN OPTICS MEETING AND 11TH LATIN AMERICAN MEETING ON OPTICS, LASERS, AND APPLICATIONS, 2013, 8785
  • [2] Alternative point of view to the theory of fractional Fourier transform
    Dattoli, G.
    Torre, A.
    Mazzacurati, G.
    [J]. IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications), 1998, 60 (03): : 215 - 224
  • [3] An alternative point of view to the theory of fractional Fourier transform
    Dattoli, G
    Torre, A
    Mazzacurati, G
    [J]. IMA JOURNAL OF APPLIED MATHEMATICS, 1998, 60 (03) : 215 - 224
  • [4] Joint transform correlator with fractional Fourier transform
    Jin, SI
    Lee, SY
    [J]. OPTICS COMMUNICATIONS, 2002, 207 (1-6) : 161 - 168
  • [5] Hilbert transform associated with the fractional Fourier transform
    Zayed, AI
    [J]. IEEE SIGNAL PROCESSING LETTERS, 1998, 5 (08) : 206 - 208
  • [6] Hilbert transform associated with the fractional Fourier transform
    Univ of Central Florida, Orlando, United States
    [J]. IEEE Signal Process Lett, 8 (206-208):
  • [7] On fractional Fourier transform moments
    Alieva, T
    Bastiaans, MJ
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2000, 7 (11) : 320 - 323
  • [8] Fractional finite Fourier transform
    Khare, K
    George, N
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2004, 21 (07) : 1179 - 1185
  • [9] Discrete fractional Fourier transform
    Pei, SC
    Yeh, MH
    [J]. ISCAS 96: 1996 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - CIRCUITS AND SYSTEMS CONNECTING THE WORLD, VOL 2, 1996, : 536 - 539
  • [10] THE GENERALIZED FRACTIONAL FOURIER TRANSFORM
    Pei, Soo-Chang
    Liu, Chun-Lin
    Lai, Yun-Chiu
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 3705 - 3708