The Fractional Fourier Transform and Harmonic Oscillation

被引:0
|
作者
M. Alper Kutay
Haldun M. Ozaktas
机构
[1] The National Research Institute of Electronics and Cryptology (TUBITAK – UEKAE),The Scientific and Technical Research Council of Turkey
[2] Bilkent University,Department of Electrical Engineering
来源
Nonlinear Dynamics | 2002年 / 29卷
关键词
fractional Fourier transform; harmonic oscillation; Green's function; phase space;
D O I
暂无
中图分类号
学科分类号
摘要
The ath-order fractional Fourier transform is a generalization ofthe ordinary Fourier transform such that the zeroth-order fractionalFourier transform operation is equal to the identity operation and thefirst-order fractional Fourier transform is equal to the ordinaryFourier transform. This paper discusses the relationship of thefractional Fourier transform to harmonic oscillation; both correspondto rotation in phase space. Various important properties of thetransform are discussed along with examples of commontransforms. Some of the applications of the transform are brieflyreviewed.
引用
收藏
页码:157 / 172
页数:15
相关论文
共 50 条
  • [21] Random fractional Fourier transform
    Liu, Zhengjun
    Liu, Shutian
    [J]. OPTICS LETTERS, 2007, 32 (15) : 2088 - 2090
  • [22] The fractional Fourier transform: A tutorial
    Mendlovic, D
    [J]. PROCEEDINGS OF THE IEEE-EURASIP WORKSHOP ON NONLINEAR SIGNAL AND IMAGE PROCESSING (NSIP'99), 1999, : 476 - 480
  • [23] Discrete fractional Fourier transform
    Candan, Cagatay
    Kutay, M.Alper
    Ozaktas, Haldun M.
    [J]. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 1999, 3 : 1713 - 1716
  • [24] Trainable Fractional Fourier Transform
    Koc, Emirhan
    Alikasifoglu, Tuna
    Aras, Arda Can
    Koc, Aykut
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 751 - 755
  • [25] The discrete fractional Fourier transform
    Candan, Ç
    Kutay, MA
    Ozaktas, HM
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (05) : 1329 - 1337
  • [26] Computation of the fractional Fourier transform
    Bultheel, A
    Martinez Sulbaran HE
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2004, 16 (03) : 182 - 202
  • [27] Fractional Fourier transform in optics
    Mendlovic, D
    Ozaktas, HM
    [J]. 18TH CONGRESS OF THE INTERNATIONAL COMMISSION FOR OPTICS: OPTICS FOR THE NEXT MILLENNIUM, TECHNICAL DIGEST, 1999, 3749 : 40 - 41
  • [28] Joint transform correlator with fractional Fourier transform
    Jin, SI
    Lee, SY
    [J]. OPTICS COMMUNICATIONS, 2002, 207 (1-6) : 161 - 168
  • [29] Hilbert transform associated with the fractional Fourier transform
    Zayed, AI
    [J]. IEEE SIGNAL PROCESSING LETTERS, 1998, 5 (08) : 206 - 208
  • [30] Hilbert transform associated with the fractional Fourier transform
    Univ of Central Florida, Orlando, United States
    [J]. IEEE Signal Process Lett, 8 (206-208):