The fractional Fourier transform and harmonic oscillation

被引:16
|
作者
Kutay, MA
Ozaktas, HM
机构
[1] UEKEA, TUBITAK, Sci & Tech Res Council Turkey, Natl Res Inst Elect & Cryptol, TR-06100 Ankara, Turkey
[2] Bilkent Univ, Dept Elect Engn, TR-06533 Bilkent, Turkey
关键词
fractional Fourier transform; harmonic oscillation; Green's function; phase space;
D O I
10.1023/A:1016543123400
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The ath-order fractional Fourier transform is a generalization of the ordinary Fourier transform such that the zeroth-order fractional Fourier transform operation is equal to the identity operation and the first-order fractional Fourier transform is equal to the ordinary Fourier transform. This paper discusses the relationship of the fractional Fourier transform to harmonic oscillation; both correspond to rotation in phase space. Various important properties of the transform are discussed along with examples of common transforms. Some of the applications of the transform are briefly reviewed.
引用
收藏
页码:157 / 172
页数:16
相关论文
共 50 条
  • [1] The Fractional Fourier Transform and Harmonic Oscillation
    M. Alper Kutay
    Haldun M. Ozaktas
    [J]. Nonlinear Dynamics, 2002, 29 : 157 - 172
  • [2] Adaptive harmonic fractional Fourier transform
    Zhang, F
    Chen, YQ
    Bi, G
    [J]. IEEE SIGNAL PROCESSING LETTERS, 1999, 6 (11) : 281 - 283
  • [3] Adaptive harmonic fractional Fourier transform
    Zhang, F
    Chen, YQ
    Bi, GA
    [J]. ISCAS 2000: IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - PROCEEDINGS, VOL V: EMERGING TECHNOLOGIES FOR THE 21ST CENTURY, 2000, : 45 - 48
  • [4] The Fractional Clifford Fourier Transform Based on a Deformed Hamiltonian for the Harmonic Oscillator
    Bernstein, Swanhild
    Faustino, Nelson
    [J]. INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019, 2020, 2293
  • [5] The Use of Fractional Fourier Transform for the Extraction of Overlapped Harmonic Chirp Signals
    Arif, Muhammad
    Shaikh, Ayazahmed
    Qureshi, Imran Ali
    [J]. MEHRAN UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, 2014, 33 (02) : 189 - 198
  • [6] PULSE COMPRESSION OF HARMONIC CHIRP SIGNALS USING THE FRACTIONAL FOURIER TRANSFORM
    Arif, M.
    Cowell, D. M. J.
    Freear, S.
    [J]. ULTRASOUND IN MEDICINE AND BIOLOGY, 2010, 36 (06): : 949 - 956
  • [7] Extraction of Spectrally Overlapped Second Harmonic using the Fractional Fourier Transform
    Harput, Sevan
    Arif, Muhammad
    McLaughlan, James
    Smith, Peter R.
    Cowell, David M. J.
    Freear, Steven
    [J]. 2013 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2013, : 37 - 40
  • [8] The discrete harmonic oscillator, Harper's equation, and the discrete fractional Fourier transform
    Barker, L
    Candan, C
    Hakioglu, T
    Kutay, MA
    Ozaktas, HM
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (11): : 2209 - 2222
  • [9] Extraction of an Overlapped Second Harmonic Chirp Component using the Fractional Fourier Transform
    Arif, Muhammad
    Harput, Sevan
    Smith, Peter R.
    Cowell, David M. J.
    Freear, Steven
    [J]. 2011 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2011, : 405 - 408
  • [10] The scale of the Fourier transform: a point of view of the fractional Fourier transform
    Jimenez, C. J.
    Vilardy, J. M.
    Salinas, S.
    Mattos, L.
    Torres, C.
    [J]. VIII INTERNATIONAL CONGRESS OF ENGINEERING PHYSICS, 2017, 792