Bykovskii’s theorem and a generalization of Larcher’s theorem

被引:0
|
作者
D. M. Ushanov
机构
[1] Moscow State University,
来源
Mathematical Notes | 2012年 / 91卷
关键词
lattice; discrepancy; Korobov lattice; Bykovskii’s theorem; Larcher’s theorem;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:746 / 750
页数:4
相关论文
共 50 条
  • [31] On a generalization of Fueter's theorem
    Sommen, F
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2000, 19 (04): : 899 - 902
  • [32] A generalization of Poncelet's theorem
    Protasov, V. Yu.
    RUSSIAN MATHEMATICAL SURVEYS, 2006, 61 (06) : 1180 - 1182
  • [33] On a generalization of Polya's theorem
    Rochev, I. P.
    MATHEMATICAL NOTES, 2007, 81 (1-2) : 247 - 259
  • [34] A generalization of Obata’s theorem
    Akhil Ranjan
    G. Santhanam
    The Journal of Geometric Analysis, 1997, 7 (3): : 357 - 375
  • [35] On a Generalization of Voronin's Theorem
    Laurincikas, A.
    MATHEMATICAL NOTES, 2020, 107 (3-4) : 442 - 451
  • [36] A Generalization of Schatunowsky's Theorem
    Kaneko, Yuto
    Nakai, Hirofumi
    AMERICAN MATHEMATICAL MONTHLY, 2025,
  • [37] Cauchy's theorem and generalization
    Reuss, Paul
    EPJ NUCLEAR SCIENCES & TECHNOLOGIES, 2018, 4
  • [38] GENERALIZATION OF A THEOREM OF KULLBACK,S
    RECOULES, R
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (12): : 691 - 694
  • [39] A generalization of the Opial's theorem
    Cegielski, Andrzej
    CONTROL AND CYBERNETICS, 2007, 36 (03): : 601 - 610
  • [40] On a generalization of Lyapounov's theorem
    vanMill, J
    Ran, A
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1996, 7 (02): : 227 - 242