Bykovskii’s theorem and a generalization of Larcher’s theorem

被引:0
|
作者
D. M. Ushanov
机构
[1] Moscow State University,
来源
Mathematical Notes | 2012年 / 91卷
关键词
lattice; discrepancy; Korobov lattice; Bykovskii’s theorem; Larcher’s theorem;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:746 / 750
页数:4
相关论文
共 50 条
  • [21] A generalization of Boesch's theorem
    Hu, Maolin
    Cheng, Yongxi
    Xu, Weidong
    DISCRETE MATHEMATICS, 2012, 312 (06) : 1171 - 1177
  • [22] A generalization of Lancret's theorem
    Ciftci, Uenver
    JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (12) : 1597 - 1603
  • [23] A GENERALIZATION OF CHENG'S THEOREM
    Li, Peter
    Wang, Jiaping
    ASIAN JOURNAL OF MATHEMATICS, 2008, 12 (04) : 519 - 526
  • [24] The generalization of Gauss's theorem
    Barnett, SJ
    PHYSICAL REVIEW, 1902, 15 (03): : 172 - 174
  • [25] On a Generalization of Voronin’s Theorem
    A. Laurinčikas
    Mathematical Notes, 2020, 107 : 442 - 451
  • [26] A generalization of Proth's theorem
    Berrizbeitia, P
    Berry, TG
    Tena-Ayuso, J
    ACTA ARITHMETICA, 2003, 110 (02) : 107 - 115
  • [27] A generalization of Fueter's theorem
    Peña D.P.
    Sommen F.
    Results in Mathematics, 2006, 49 (3-4) : 301 - 311
  • [28] A generalization of Miyachi's theorem
    Daher, Radouan
    Kawazoe, Takeshi
    Mejjaoli, Hatem
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2009, 61 (02) : 551 - 558
  • [29] A generalization of Baker's theorem
    Beelen, Peter
    FINITE FIELDS AND THEIR APPLICATIONS, 2009, 15 (05) : 558 - 568
  • [30] A generalization of Jentzsch’s theorem
    E. A. Lebedeva
    Mathematical Notes, 2010, 88 : 717 - 722