On a Generalization of Voronin’s Theorem

被引:0
|
作者
A. Laurinčikas
机构
[1] Vilnius University,Institute of Mathematics
来源
Mathematical Notes | 2020年 / 107卷
关键词
Riemann zeta-function; limit theorem; Voronin’s theorem; universality;
D O I
暂无
中图分类号
学科分类号
摘要
Voronin’s theorem states that the Riemann zeta-function ζ(s) is universal in the sense that all analytic functions that are defined and have no zeros on the right half of the critical strip can be approximated by the shifts ζ(s + iτ), τ ∈ ℝ. Some results on the approximation by the shifts ζ(s + iϕ(τ)) with some function ϕ(τ) are also known. In this paper, it is established that an analytic function without zeros in the strip 1/2 + 1/(2α) < Res < 1 can be approximated by the shifts ζ(s + i logατ) with α > 1.
引用
收藏
页码:442 / 451
页数:9
相关论文
共 50 条
  • [1] On a Generalization of Voronin's Theorem
    Laurincikas, A.
    MATHEMATICAL NOTES, 2020, 107 (3-4) : 442 - 451
  • [2] A generalization of the Voronin theorem
    Laurincikas, Antanas
    Macaitiene, Renata
    Siauciunas, Darius
    LITHUANIAN MATHEMATICAL JOURNAL, 2019, 59 (02) : 156 - 168
  • [3] A generalization of the Voronin theorem
    Antanas Laurinčikas
    Darius RenataMacaitienė
    Lithuanian Mathematical Journal, 2019, 59 : 156 - 168
  • [4] Bykovskii’s theorem and a generalization of Larcher’s theorem
    D. M. Ushanov
    Mathematical Notes, 2012, 91 : 746 - 750
  • [5] Bykovskii's theorem and a generalization of Larcher's theorem
    Ushanov, D. M.
    MATHEMATICAL NOTES, 2012, 91 (5-6) : 746 - 750
  • [6] On a generalization of Szemeredi's theorem
    Shkredov, ID
    DOKLADY MATHEMATICS, 2005, 72 (03) : 899 - 902
  • [7] A generalization of Selivanov's theorem
    Bereznyuk, SL
    Gailit, MV
    SIBERIAN MATHEMATICAL JOURNAL, 1996, 37 (03) : 436 - 446
  • [8] A generalization of Hadamard's theorem
    Lagomasino, GL
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 133 (1-2) : 692 - 693
  • [9] A generalization of Kung's theorem
    Johnsen, Trygve
    Shiromoto, Keisuke
    Verdure, Hugues
    DESIGNS CODES AND CRYPTOGRAPHY, 2016, 81 (01) : 169 - 178
  • [10] GENERALIZATION OF PTOLEMY'S THEOREM
    Tran Quang Hung
    JOURNAL OF SCIENCE AND ARTS, 2019, (02): : 275 - 280