On a Generalization of Voronin’s Theorem

被引:0
|
作者
A. Laurinčikas
机构
[1] Vilnius University,Institute of Mathematics
来源
Mathematical Notes | 2020年 / 107卷
关键词
Riemann zeta-function; limit theorem; Voronin’s theorem; universality;
D O I
暂无
中图分类号
学科分类号
摘要
Voronin’s theorem states that the Riemann zeta-function ζ(s) is universal in the sense that all analytic functions that are defined and have no zeros on the right half of the critical strip can be approximated by the shifts ζ(s + iτ), τ ∈ ℝ. Some results on the approximation by the shifts ζ(s + iϕ(τ)) with some function ϕ(τ) are also known. In this paper, it is established that an analytic function without zeros in the strip 1/2 + 1/(2α) < Res < 1 can be approximated by the shifts ζ(s + i logατ) with α > 1.
引用
收藏
页码:442 / 451
页数:9
相关论文
共 50 条
  • [31] A generalization of the Opial's theorem
    Cegielski, Andrzej
    CONTROL AND CYBERNETICS, 2007, 36 (03): : 601 - 610
  • [32] On a generalization of Lyapounov's theorem
    vanMill, J
    Ran, A
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1996, 7 (02): : 227 - 242
  • [33] A generalization of Niho's theorem
    Rosendahl, P
    DESIGNS CODES AND CRYPTOGRAPHY, 2006, 38 (03) : 331 - 336
  • [34] A generalization of Aronszajn's theorem
    Filippov, VV
    DIFFERENTIAL EQUATIONS, 1997, 33 (01) : 75 - 79
  • [35] A generalization of Boesch's theorem
    Hu, Maolin
    Cheng, Yongxi
    Xu, Weidong
    DISCRETE MATHEMATICS, 2012, 312 (06) : 1171 - 1177
  • [36] A generalization of Lancret's theorem
    Ciftci, Uenver
    JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (12) : 1597 - 1603
  • [37] A GENERALIZATION OF CHENG'S THEOREM
    Li, Peter
    Wang, Jiaping
    ASIAN JOURNAL OF MATHEMATICS, 2008, 12 (04) : 519 - 526
  • [38] The generalization of Gauss's theorem
    Barnett, SJ
    PHYSICAL REVIEW, 1902, 15 (03): : 172 - 174
  • [39] A generalization of Proth's theorem
    Berrizbeitia, P
    Berry, TG
    Tena-Ayuso, J
    ACTA ARITHMETICA, 2003, 110 (02) : 107 - 115
  • [40] A generalization of Fueter's theorem
    Peña D.P.
    Sommen F.
    Results in Mathematics, 2006, 49 (3-4) : 301 - 311