Bykovskii’s theorem and a generalization of Larcher’s theorem

被引:0
|
作者
D. M. Ushanov
机构
[1] Moscow State University,
来源
Mathematical Notes | 2012年 / 91卷
关键词
lattice; discrepancy; Korobov lattice; Bykovskii’s theorem; Larcher’s theorem;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:746 / 750
页数:4
相关论文
共 50 条
  • [1] Bykovskii's theorem and a generalization of Larcher's theorem
    Ushanov, D. M.
    MATHEMATICAL NOTES, 2012, 91 (5-6) : 746 - 750
  • [2] Generalization of Romanoff's Theorem
    Radomskii, A.
    MATHEMATICAL NOTES, 2023, 114 (5-6) : 903 - 913
  • [3] On a generalization of Redei's theorem
    Gács, A
    COMBINATORICA, 2003, 23 (04) : 585 - 598
  • [4] On a generalization of Jentzsch's theorem
    Blatt, Hans-Peter
    Blatt, Simon
    Luh, Wolfgang
    JOURNAL OF APPROXIMATION THEORY, 2009, 159 (01) : 26 - 38
  • [5] A generalization of Ohkawa's theorem
    Casacuberta, Carles
    Gutierrez, Javier J.
    Rosicky, Jiri
    COMPOSITIO MATHEMATICA, 2014, 150 (05) : 893 - 902
  • [6] A GENERALIZATION OF PTOLEMY'S THEOREM
    Tran, Quang Hung
    Tran, Manh Dung
    TEACHING OF MATHEMATICS, 2024, 27 (02): : 104 - 111
  • [7] A Generalization of Pohlke's Theorem
    Bergold, Helmut
    ELEMENTE DER MATHEMATIK, 2014, 69 (02) : 57 - 60
  • [8] A generalization of Forelli's theorem
    Joo, Jae-Cheon
    Kim, Kang-Tae
    Schmalz, Gerd
    MATHEMATISCHE ANNALEN, 2013, 355 (03) : 1171 - 1176
  • [9] A generalization of Cobham's theorem
    Durand, F
    THEORY OF COMPUTING SYSTEMS, 1998, 31 (02) : 169 - 185
  • [10] Generalization of Obata's theorem
    J Geom Anal, 3 (357-375):