A generalization of Obata’s theorem

被引:0
|
作者
Akhil Ranjan
G. Santhanam
机构
[1] Indian Institute of Technology,Department of Mathematics
[2] Tata Institute of Fundamental Research,School of Mathematics
来源
The Journal of Geometric Analysis | 1997年 / 7卷 / 3期
关键词
53C20; 53C22; 53C35; Hessian; symmetric spaces; Kähler; pointed Blaschke manifold; manifold;
D O I
10.1007/BF02921625
中图分类号
学科分类号
摘要
In a complete Riemannian manifold (M, g) if the hessian of a real-valued function satisfies some suitable conditions, then it restricts the geometry of (M, g). In this paper we characterize all compact rank-one symmetric spaces as those Riemannian manifolds (M, g) admitting a real-valued functionu such that the hessian ofu has at most two eigenvalues −u and\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ - \frac{{u + 1}}{2}$$ \end{document} under some mild hypotheses on (M, g). This generalizes a well-known result of Obata which characterizes all round spheres.
引用
收藏
页码:357 / 375
页数:18
相关论文
共 50 条