A generalization of Obata’s theorem

被引:0
|
作者
Akhil Ranjan
G. Santhanam
机构
[1] Indian Institute of Technology,Department of Mathematics
[2] Tata Institute of Fundamental Research,School of Mathematics
来源
The Journal of Geometric Analysis | 1997年 / 7卷 / 3期
关键词
53C20; 53C22; 53C35; Hessian; symmetric spaces; Kähler; pointed Blaschke manifold; manifold;
D O I
10.1007/BF02921625
中图分类号
学科分类号
摘要
In a complete Riemannian manifold (M, g) if the hessian of a real-valued function satisfies some suitable conditions, then it restricts the geometry of (M, g). In this paper we characterize all compact rank-one symmetric spaces as those Riemannian manifolds (M, g) admitting a real-valued functionu such that the hessian ofu has at most two eigenvalues −u and\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ - \frac{{u + 1}}{2}$$ \end{document} under some mild hypotheses on (M, g). This generalizes a well-known result of Obata which characterizes all round spheres.
引用
收藏
页码:357 / 375
页数:18
相关论文
共 50 条
  • [31] A generalization of Poncelet's theorem
    Protasov, V. Yu.
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2006, 61 (06) : 1180 - 1182
  • [32] On a Generalization of Voronin's Theorem
    Laurincikas, A.
    [J]. MATHEMATICAL NOTES, 2020, 107 (3-4) : 442 - 451
  • [33] On a generalization of Lyapounov's theorem
    vanMill, J
    Ran, A
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 1996, 7 (02): : 227 - 242
  • [34] On a generalization of Fueter's theorem
    Sommen, F
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2000, 19 (04): : 899 - 902
  • [35] On a generalization of Polya's theorem
    Rochev, I. P.
    [J]. MATHEMATICAL NOTES, 2007, 81 (1-2) : 247 - 259
  • [36] Cauchy's theorem and generalization
    Reuss, Paul
    [J]. EPJ NUCLEAR SCIENCES & TECHNOLOGIES, 2018, 4
  • [37] GENERALIZATION OF A THEOREM OF KULLBACK,S
    RECOULES, R
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (12): : 691 - 694
  • [38] A generalization of Jentzsch’s theorem
    E. A. Lebedeva
    [J]. Mathematical Notes, 2010, 88 : 717 - 722
  • [39] A GENERALIZATION OF CHENG'S THEOREM
    Li, Peter
    Wang, Jiaping
    [J]. ASIAN JOURNAL OF MATHEMATICS, 2008, 12 (04) : 519 - 526
  • [40] A generalization of Niho's theorem
    Rosendahl, P
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2006, 38 (03) : 331 - 336