Traveling-Wave Solutions of the Schwarz–Korteweg–de Vries Equation in 2+1 Dimensions and the Ablowitz–Kaup–Newell–Segur Equation Through Symmetry Reductions

被引:0
|
作者
M. S. Bruzón
M. L. Gandarias
C. Muriel
J. Ramírez
F. R. Romero
机构
[1] Universidad de Cádiz,Departamento de Matemáticas
[2] Universidad de Sevilla,Departamento de Física Teórica
来源
关键词
partial differential equations; Lie symmetries;
D O I
暂无
中图分类号
学科分类号
摘要
One of the more interesting solutions of the (2+1)-dimensional integrable Schwarz–Korteweg–de Vries (SKdV) equation is the soliton solutions. We previously derived a complete group classification for the SKdV equation in 2+1 dimensions. Using classical Lie symmetries, we now consider traveling-wave reductions with a variable velocity depending on the form of an arbitrary function. The corresponding solutions of the (2+1)-dimensional equation involve up to three arbitrary smooth functions. Consequently, the solutions exhibit a rich variety of qualitative behaviors. In particular, we show the interaction of a Wadati soliton with a line soliton. Moreover, via a Miura transformation, the SKdV is closely related to the Ablowitz–Kaup–Newell–Segur (AKNS) equation in 2+1 dimensions. Using classical Lie symmetries, we consider traveling-wave reductions for the AKNS equation in 2+1 dimensions. It is interesting that neither of the (2+1)-dimensional integrable systems considered admit Virasoro-type subalgebras.
引用
收藏
页码:1378 / 1389
页数:11
相关论文
共 50 条
  • [41] Exact Traveling Wave Solutions of the Loaded Modified Korteweg-de Vries Equation
    Baltaeva, Iroda I.
    Rakhimov, Ilkham D.
    Khasanov, Muzaffar M.
    BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS, 2022, 41 : 85 - 95
  • [42] Different Wave Structures for the (2+1)-Dimensional Korteweg-de Vries Equation
    Qin, Chun-Rong
    Liu, Jian-Guo
    Zhu, Wen-Hui
    Ai, Guo-Ping
    Uddin, M. Hafiz
    ADVANCES IN MATHEMATICAL PHYSICS, 2022, 2022
  • [43] Almost periodic solutions of a (2+1)-dimensional Schwarzian Korteweg de Vries equation
    Luo, Mingxing
    Li, Limei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (12) : 4452 - 4460
  • [44] Ablowitz-Kaup-Newell-Segur system, conservation laws and Backlund transformation of a variable-coefficient Korteweg-de Vries equation in plasma physics, fluid dynamics or atmospheric science
    Chen, Yu-Qi
    Tian, Bo
    Qu, Qi-Xing
    Li, He
    Zhao, Xue-Hui
    Tian, He-Yuan
    Wang, Meng
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2020, 34 (25):
  • [45] Computational methods and traveling wave solutions for the fourth-order nonlinear Ablowitz-Kaup-Newell-Segur water wave dynamical equation via two methods and its applications
    Ali, Asghar
    Seadawy, Aly R.
    Lu, Dianchen
    OPEN PHYSICS, 2018, 16 (01): : 219 - 226
  • [46] New periodic solitary wave solutions for the new (2+1)-dimensional Korteweg-de Vries equation
    Li, Ye-Zhou
    Liu, Jian-Guo
    NONLINEAR DYNAMICS, 2018, 91 (01) : 497 - 504
  • [47] Symbolic computation and non-travelling wave solutions of the (2+1)-dimensional Korteweg de Vries equation
    Wang, DS
    Zhang, HQ
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2005, 60 (04): : 221 - 228
  • [48] Painlevé analysis, infinite dimensional symmetry group and symmetry reductions for the(2+1)-dimensional Korteweg–de Vries–Sawada–Kotera–Ramani equation
    Bo Ren
    Ji Lin
    Wan-Li Wang
    Communications in Theoretical Physics, 2023, 75 (08) : 65 - 70
  • [49] Application of the method of simplest equation for obtaining exact traveling-wave solutions for the extended Korteweg-de Vries equation and generalized Camassa-Holm equation
    Vitanov, Nikolay K.
    Dimitrova, Zlatinka I.
    Kantz, Holger
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (14) : 7480 - 7492
  • [50] Backlund transformations, nonlocal symmetry and exact solutions of a generalized (2+1)-dimensional Korteweg-de Vries equation
    Zhao, Zhonglong
    CHINESE JOURNAL OF PHYSICS, 2021, 73 : 695 - 705