Traveling-Wave Solutions of the Schwarz–Korteweg–de Vries Equation in 2+1 Dimensions and the Ablowitz–Kaup–Newell–Segur Equation Through Symmetry Reductions

被引:0
|
作者
M. S. Bruzón
M. L. Gandarias
C. Muriel
J. Ramírez
F. R. Romero
机构
[1] Universidad de Cádiz,Departamento de Matemáticas
[2] Universidad de Sevilla,Departamento de Física Teórica
来源
关键词
partial differential equations; Lie symmetries;
D O I
暂无
中图分类号
学科分类号
摘要
One of the more interesting solutions of the (2+1)-dimensional integrable Schwarz–Korteweg–de Vries (SKdV) equation is the soliton solutions. We previously derived a complete group classification for the SKdV equation in 2+1 dimensions. Using classical Lie symmetries, we now consider traveling-wave reductions with a variable velocity depending on the form of an arbitrary function. The corresponding solutions of the (2+1)-dimensional equation involve up to three arbitrary smooth functions. Consequently, the solutions exhibit a rich variety of qualitative behaviors. In particular, we show the interaction of a Wadati soliton with a line soliton. Moreover, via a Miura transformation, the SKdV is closely related to the Ablowitz–Kaup–Newell–Segur (AKNS) equation in 2+1 dimensions. Using classical Lie symmetries, we consider traveling-wave reductions for the AKNS equation in 2+1 dimensions. It is interesting that neither of the (2+1)-dimensional integrable systems considered admit Virasoro-type subalgebras.
引用
下载
收藏
页码:1378 / 1389
页数:11
相关论文
共 50 条