Traveling-Wave Solutions of the Schwarz–Korteweg–de Vries Equation in 2+1 Dimensions and the Ablowitz–Kaup–Newell–Segur Equation Through Symmetry Reductions

被引:0
|
作者
M. S. Bruzón
M. L. Gandarias
C. Muriel
J. Ramírez
F. R. Romero
机构
[1] Universidad de Cádiz,Departamento de Matemáticas
[2] Universidad de Sevilla,Departamento de Física Teórica
来源
关键词
partial differential equations; Lie symmetries;
D O I
暂无
中图分类号
学科分类号
摘要
One of the more interesting solutions of the (2+1)-dimensional integrable Schwarz–Korteweg–de Vries (SKdV) equation is the soliton solutions. We previously derived a complete group classification for the SKdV equation in 2+1 dimensions. Using classical Lie symmetries, we now consider traveling-wave reductions with a variable velocity depending on the form of an arbitrary function. The corresponding solutions of the (2+1)-dimensional equation involve up to three arbitrary smooth functions. Consequently, the solutions exhibit a rich variety of qualitative behaviors. In particular, we show the interaction of a Wadati soliton with a line soliton. Moreover, via a Miura transformation, the SKdV is closely related to the Ablowitz–Kaup–Newell–Segur (AKNS) equation in 2+1 dimensions. Using classical Lie symmetries, we consider traveling-wave reductions for the AKNS equation in 2+1 dimensions. It is interesting that neither of the (2+1)-dimensional integrable systems considered admit Virasoro-type subalgebras.
引用
收藏
页码:1378 / 1389
页数:11
相关论文
共 50 条
  • [1] Traveling-wave solutions of the Schwarz-Korteweg-de Vries equation in 2+1 dimensions and the Ablowitz-Kaup-Newell-Segur equation through symmetry reductions
    Bruzón, MS
    Gandarias, ML
    Muriel, C
    Ramírez, J
    Romero, FR
    THEORETICAL AND MATHEMATICAL PHYSICS, 2003, 137 (01) : 1378 - 1389
  • [2] Classical Symmetry Reductions of the Schwarz–Korteweg–de Vries Equation in 2+1 Dimensions
    M. L. Gandarias
    M. S. Bruzón
    J. Ramirez
    Theoretical and Mathematical Physics, 2003, 134 : 62 - 71
  • [3] Classical symmetry reductions of the Schwarz-Korteweg-de Vries equation in 2+1 dimensions
    Gandarias, ML
    Bruzón, MS
    Ramirez, J
    THEORETICAL AND MATHEMATICAL PHYSICS, 2003, 134 (01) : 62 - 71
  • [4] Symmetry group and exact solutions for the 2+1 dimensional Ablowitz-Kaup-Newell-Segur equation
    Ren, Bo
    Xu, Xue-jun
    Lin, Ji
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (12)
  • [5] Variable Separation Solutions for the (2+1)-Dimensional General Ablowitz-Kaup-Newell-Segur Equation
    Lei, Jun
    Ma, Song-Hua
    Fang, Jian-Ping
    MATERIALS, MECHANICAL ENGINEERING AND MANUFACTURE, PTS 1-3, 2013, 268-270 : 1186 - 1189
  • [6] Symmetry reductions and rational non-traveling wave solutions for the (2+1)-D Ablowitz-KaupNewell- Segur equation
    Kang, Xiao-rong
    Xian Daquan
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2016, 26 (08) : 2331 - 2339
  • [7] Complex solitons in the conformable (2+1)-dimensional Ablowitz-Kaup-Newell-Segur equation
    Gao, Wei
    Yell, Gulnur
    Baskonus, Haci Mehmet
    Cattani, Carlo
    AIMS MATHEMATICS, 2020, 5 (01): : 507 - 521
  • [8] NEW EXACT SOLUTIONS FOR ABLOWITZ-KAUP-NEWELL-SEGUR WATER WAVE EQUATION
    Dusunceli, Faruk
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2019, 10 (02): : 171 - 177
  • [9] The investigation into the Schwarz-Korteweg-de Vries equation and the Schwarz derivative in (2+1) dimensions
    Toda, K
    Yu, SJ
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (07) : 4747 - 4751
  • [10] LUMP AND MIXED ROGUE-SOLITON SOLUTIONS TO THE 2+1 DIMENSIONAL ABLOWITZ-KAUP-NEWELL-SEGUR EQUATION
    Issasfa, Asma
    Lin, Ji
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (01): : 314 - 325