Correct solvability, embedding theorems and separability for the Sturm-Liouville equation

被引:0
|
作者
Chernyavskaya N.A. [1 ]
Shuster L.A. [2 ]
机构
[1] Department of Mathematics, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva
[2] Department of Mathematics, Bar-Ilan University, Ramat Gan
关键词
Embedding theorem; Sobolev space; Sturm-Liouville equation;
D O I
10.1007/s40574-015-0024-2
中图分类号
学科分类号
摘要
For p [1,∞), f Lp(ℝ) and 0 ≤ q L1Loc(ℝ), we show that the weighted function space S(2)p (R, q) ={ y AC(1)loc (ℝ) : ∥y" qy∥p + ∥q1/p y∥p < ∞} is embedded into L p(R) if and only if the equation -y"(x) + q(x)y(x) = f (x), x ℝ, is correctly solvable in Lp(ℝ). © Unione Matematica Italiana 2015.
引用
收藏
页码:45 / 52
页数:7
相关论文
共 50 条
  • [31] A generalisation of the Sturm-Liouville type equation
    Lusternik, L
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1937, 15 : 235 - 238
  • [32] Dissipative Correct Restrictions and Extensions for the Sturm-Liouville Operator
    Biyarov, Bazarkan
    Abdrasheva, Gulnara
    INTERNATIONAL CONFERENCE FUNCTIONAL ANALYSIS IN INTERDISCIPLINARY APPLICATIONS (FAIA2017), 2017, 1880
  • [33] Sturm's theorems for generalized derivative and generalized Sturm-Liouville problem
    Pandey, Prashant K.
    Pandey, Rajesh K.
    Agrawal, Om P.
    MATHEMATICAL COMMUNICATIONS, 2023, 28 (01) : 141 - 152
  • [34] The inverse Sturm-Liouville problem: Uniqueness theorems and counterexamples
    V. A. Sadovnichii
    Ya. T. Sultanaev
    A. M. Akhtyamov
    Doklady Mathematics, 2006, 74 : 889 - 892
  • [35] Oscillation theorems for Sturm-Liouville problems with distribution potentials
    Ben Amara J.
    Shkalikov A.A.
    Moscow University Mathematics Bulletin, 2009, 64 (3) : 132 - 137
  • [36] Solvability of the inverse Sturm-Liouville problem with indecomposable boundary conditions
    V. A. Sadovnichii
    Ya. T. Sultanaev
    A. M. Akhtyamov
    Doklady Mathematics, 2007, 75 : 20 - 22
  • [37] Some comparison theorems for Sturm-Liouville eigenvalue problems
    Chu, CP
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 262 (01) : 376 - 387
  • [38] Sturm-Liouville theory, asymptotics, and the Schrodinger equation
    Pearson, DB
    SPECTRAL THEORY AND COMPUTATIONAL METHODS OF STURM-LIOUVILLE PROBLEMS, 1997, 191 : 301 - 312
  • [39] On the Isospectral Sixth Order Sturm-Liouville Equation
    Ghanbari, Kazem
    Mirzaei, Hanif
    JOURNAL OF LIE THEORY, 2013, 23 (04) : 921 - 935
  • [40] Sufficient oscillation conditions for the Sturm-Liouville equation
    Bilal, Sh.
    Dzhenaliev, M. T.
    DIFFERENTIAL EQUATIONS, 2017, 53 (08) : 989 - 995