A generalisation of the Sturm-Liouville type equation

被引:0
|
作者
Lusternik, L
机构
关键词
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:235 / 238
页数:4
相关论文
共 50 条
  • [1] Application of the Fractional Sturm-Liouville Theory to a Fractional Sturm-Liouville Telegraph Equation
    Ferreira, M.
    Rodrigues, M. M.
    Vieira, N.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (05)
  • [2] SCHLICHT SOLUTIONS OF THE STURM-LIOUVILLE EQUATION
    ROBERTSON, MS
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 59 (06) : 545 - 545
  • [3] SPACES ADMISSIBLE FOR THE STURM-LIOUVILLE EQUATION
    Chernyavskaya, N. A.
    Shuster, L. A.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (03) : 1023 - 1052
  • [4] A representation for solutions of the Sturm-Liouville equation
    Kravchenko, Vladislav V.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2008, 53 (08) : 775 - 789
  • [5] AMBARZUMYAN-TYPE THEOREMS FOR THE STURM-LIOUVILLE EQUATION ON A GRAPH
    Yang, Chuan-Fu
    Huang, Zhen-You
    Yang, Xiao-Ping
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2009, 39 (04) : 1353 - 1372
  • [6] A SPECIFIC STURM-LIOUVILLE DIFFERENTIAL EQUATION
    Tanriverdi, Tanfer
    THERMAL SCIENCE, 2019, 23 : S47 - S56
  • [7] Conformable fractional Sturm-Liouville equation
    Allahverdiev, Bilender P.
    Tuna, Huseyin
    Yalcinkaya, Yuksel
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (10) : 3508 - 3526
  • [8] THE LEVINSON-TYPE FORMULA FOR A CLASS OF STURM-LIOUVILLE EQUATION
    Goktas, Sertac
    Mamedov, Khanlar R.
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (04): : 1219 - 1229
  • [9] Integral operators of Sturm-Liouville type
    Porter, D
    Stirling, DSG
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2000, 38 (01) : 51 - 65
  • [10] Sturm-Liouville theory, asymptotics, and the Schrodinger equation
    Pearson, DB
    SPECTRAL THEORY AND COMPUTATIONAL METHODS OF STURM-LIOUVILLE PROBLEMS, 1997, 191 : 301 - 312