Correct solvability, embedding theorems and separability for the Sturm-Liouville equation

被引:0
|
作者
Chernyavskaya N.A. [1 ]
Shuster L.A. [2 ]
机构
[1] Department of Mathematics, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva
[2] Department of Mathematics, Bar-Ilan University, Ramat Gan
关键词
Embedding theorem; Sobolev space; Sturm-Liouville equation;
D O I
10.1007/s40574-015-0024-2
中图分类号
学科分类号
摘要
For p [1,∞), f Lp(ℝ) and 0 ≤ q L1Loc(ℝ), we show that the weighted function space S(2)p (R, q) ={ y AC(1)loc (ℝ) : ∥y" qy∥p + ∥q1/p y∥p < ∞} is embedded into L p(R) if and only if the equation -y"(x) + q(x)y(x) = f (x), x ℝ, is correctly solvable in Lp(ℝ). © Unione Matematica Italiana 2015.
引用
收藏
页码:45 / 52
页数:7
相关论文
共 50 条
  • [41] COMPARISON AND OSCILLATION THEOREMS FOR SINGULAR STURM-LIOUVILLE OPERATORS
    Homa, Monika
    Hryniv, Rostyslav
    OPUSCULA MATHEMATICA, 2014, 34 (01) : 97 - 113
  • [42] The inverse Sturm-Liouville problem: Uniqueness theorems and counterexamples
    Sadovnichii, V. A.
    Sultanaev, Ya. T.
    Akhtyamov, A. M.
    DOKLADY MATHEMATICS, 2006, 74 (03) : 889 - 892
  • [43] Solvability of the inverse Sturm-Liouville problem with indecomposable boundary conditions
    Sadovnichii, V. A.
    Sultanaev, Ya. T.
    Akhtyamov, A. M.
    DOKLADY MATHEMATICS, 2007, 75 (01) : 20 - 22
  • [44] Spectral Properties Of A Discrete Sturm-Liouville Equation
    Aygar, Yelda
    ozbey, Guher Gulcehre
    APPLIED MATHEMATICS E-NOTES, 2022, 22 : 335 - 344
  • [45] On a trivial monodromy criterion for the Sturm-Liouville equation
    Kh. K. Ishkin
    Mathematical Notes, 2013, 94 : 508 - 523
  • [46] On the Uniqueness Criterion for Solutions of the Sturm-Liouville Equation
    Ishkin, Kh. K.
    MATHEMATICAL NOTES, 2008, 84 (3-4) : 515 - 528
  • [47] An oscillation criterion for a dynamic Sturm-Liouville equation
    Oplustil, Z
    Pospísil, Z
    PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON DIFFERENCE EQUATIONS: NEW PROGRESS IN DIFFERENCE EQUATIONS, 2004, : 317 - 324
  • [48] Inverse spectral problem for the Sturm-Liouville equation
    Brown, BM
    Samko, VS
    Knowles, IW
    Marletta, M
    INVERSE PROBLEMS, 2003, 19 (01) : 235 - 252
  • [49] THE NEW ASYMPTOTICS FOR SOLUTIONS OF THE STURM-LIOUVILLE EQUATION
    Nazirova, Elvira A.
    Sultanaev, Yaudat T.
    Valeev, Nur F.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2023, 49 (02): : 253 - 258
  • [50] On a fractional hybrid version of the Sturm-Liouville equation
    Charandabi, Zohreh Zeinalabedini
    Rezapour, Shahram
    Ettefagh, Mina
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)