Zero loci of Bernstein–Sato ideals

被引:0
|
作者
Nero Budur
Robin van der Veer
Lei Wu
Peng Zhou
机构
[1] KU Leuven,Department of Mathematics
[2] University of Utah,undefined
[3] Institut des Hautes Études Scientifiques,undefined
来源
Inventiones mathematicae | 2021年 / 225卷
关键词
14F10; 13N10; 32C38; 32S40; 32S55;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a conjecture of the first author relating the Bernstein–Sato ideal of a finite collection of multivariate polynomials with cohomology support loci of rank one complex local systems. This generalizes a classical theorem of Malgrange and Kashiwara relating the b-function of a multivariate polynomial with the monodromy eigenvalues on the Milnor fibers cohomology.
引用
收藏
页码:45 / 72
页数:27
相关论文
共 50 条
  • [1] Zero loci of Bernstein-Sato ideals
    Budur, Nero
    van der Veer, Robin
    Wu, Lei
    Zhou, Peng
    [J]. INVENTIONES MATHEMATICAE, 2021, 225 (01) : 45 - 72
  • [2] Zero loci of Bernstein-Sato ideals-II
    Budur, Nero
    van der Veer, Robin
    Wu, Lei
    Zhou, Peng
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (03):
  • [3] Zero loci of Bernstein-Sato ideals-II
    Nero Budur
    Robin van der Veer
    Lei Wu
    Peng Zhou
    [J]. Selecta Mathematica, 2021, 27
  • [4] On the computation of Bernstein-Sato ideals
    Ucha, JM
    Castro-Jiménez, FJ
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2004, 37 (05) : 629 - 639
  • [5] BERNSTEIN-SATO IDEALS AND LOCAL SYSTEMS
    Budur, Nero
    [J]. ANNALES DE L INSTITUT FOURIER, 2015, 65 (02) : 549 - 603
  • [6] Bernstein-Sato ideals and hyperplane arrangements
    Wu, Lei
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (07)
  • [7] Local Bernstein-Sato ideals: Algorithm and examples
    Bahloul, Rouchdi
    Oaku, Toshinori
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2010, 45 (01) : 46 - 59
  • [8] On Bernstein-Sato ideals for central line arrangements
    Atikaw, Sebsibew
    Abebaw, Tilahun
    Bogvad, Rikard
    [J]. COMMUNICATIONS IN ALGEBRA, 2021, 49 (10) : 4123 - 4132
  • [9] BERNSTEIN-SATO POLYNOMIALS FOR GENERAL IDEALS VS. PRINCIPAL IDEALS
    Mustata, Mircea
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (09) : 3655 - 3662
  • [10] Zeta functions and Bernstein–Sato polynomials for ideals in dimension two
    Bart Bories
    [J]. Revista Matemática Complutense, 2013, 26 : 753 - 772