Zero loci of Bernstein-Sato ideals

被引:9
|
作者
Budur, Nero [1 ]
van der Veer, Robin [1 ]
Wu, Lei [2 ]
Zhou, Peng [3 ]
机构
[1] Katholieke Univ Leuven, Celestijnenlaan 200B, B-3001 Leuven, Belgium
[2] Univ Utah, Dept Math, 155 S 1400 E, Salt Lake City, UT 84112 USA
[3] Inst Hautes Etud Sci, 35 Route Chartres, F-91440 Bures Sur Yvette, France
关键词
14F10; 13N10; 32C38; 32S40; 32S55; VANISHING PROXIMITY; SYSTEMS;
D O I
10.1007/s00222-020-01025-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a conjecture of the first author relating the Bernstein-Sato ideal of a finite collection of multivariate polynomials with cohomology support loci of rank one complex local systems. This generalizes a classical theorem of Malgrange and Kashiwara relating the b-function of a multivariate polynomial with the monodromy eigenvalues on the Milnor fibers cohomology.
引用
收藏
页码:45 / 72
页数:28
相关论文
共 50 条
  • [1] Zero loci of Bernstein-Sato ideals-II
    Nero Budur
    Robin van der Veer
    Lei Wu
    Peng Zhou
    [J]. Selecta Mathematica, 2021, 27
  • [2] Zero loci of Bernstein-Sato ideals-II
    Budur, Nero
    van der Veer, Robin
    Wu, Lei
    Zhou, Peng
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (03):
  • [3] Zero loci of Bernstein–Sato ideals
    Nero Budur
    Robin van der Veer
    Lei Wu
    Peng Zhou
    [J]. Inventiones mathematicae, 2021, 225 : 45 - 72
  • [4] On the computation of Bernstein-Sato ideals
    Ucha, JM
    Castro-Jiménez, FJ
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2004, 37 (05) : 629 - 639
  • [5] BERNSTEIN-SATO IDEALS AND LOCAL SYSTEMS
    Budur, Nero
    [J]. ANNALES DE L INSTITUT FOURIER, 2015, 65 (02) : 549 - 603
  • [6] Bernstein-Sato ideals and hyperplane arrangements
    Wu, Lei
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (07)
  • [7] Local Bernstein-Sato ideals: Algorithm and examples
    Bahloul, Rouchdi
    Oaku, Toshinori
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2010, 45 (01) : 46 - 59
  • [8] On Bernstein-Sato ideals for central line arrangements
    Atikaw, Sebsibew
    Abebaw, Tilahun
    Bogvad, Rikard
    [J]. COMMUNICATIONS IN ALGEBRA, 2021, 49 (10) : 4123 - 4132
  • [9] BERNSTEIN-SATO THEORY FOR ARBITRARY IDEALS IN POSITIVE CHARACTERISTIC
    Quinlan-Gallego, Eamon
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (03) : 1623 - 1660
  • [10] BERNSTEIN-SATO POLYNOMIALS FOR GENERAL IDEALS VS. PRINCIPAL IDEALS
    Mustata, Mircea
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (09) : 3655 - 3662