On Bernstein-Sato ideals for central line arrangements

被引:0
|
作者
Atikaw, Sebsibew [1 ]
Abebaw, Tilahun [2 ]
Bogvad, Rikard [3 ]
机构
[1] Univ Gondar, Dept Math, Gondar, Ethiopia
[2] Addis Ababa Univ, Dept Math, Addis Ababa, Ethiopia
[3] Stockholm Univ, Dept Math, S-10691 Stockholm, Sweden
关键词
Bernstein-Sato ideals; D-modules; sheaves of differential operators; MILNOR FIBER; POLYNOMIALS; COHOMOLOGY;
D O I
10.1080/00927872.2021.1915323
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The polynomial alpha=xy Pi(m)(i=3)(a(i)x+y)is an element of C[x,y] determines a plane central line arrangement alpha = 0. We compute explicitly multivariate Bernstein-Sato ideals of alpha by using the decomposition behavior of the D-2-module M-alpha(beta)=C[x,y,1/alpha]alpha(beta) given in earlier work by the authors. Our results are partially special cases of recent work in much greater generality, by Maisonobe on free hyperplane arrangements and Budur et al.) as well as Bath; however our proof is independent and gives some more information on different variants of Bernstein-Sato ideals in the simple plane case.
引用
收藏
页码:4123 / 4132
页数:10
相关论文
共 50 条
  • [1] Bernstein-Sato ideals and hyperplane arrangements
    Wu, Lei
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (07)
  • [2] On the computation of Bernstein-Sato ideals
    Ucha, JM
    Castro-Jiménez, FJ
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2004, 37 (05) : 629 - 639
  • [3] COMBINATORIALLY DETERMINED ZEROES OF BERNSTEIN-SATO IDEALS FOR TAME AND FREE ARRANGEMENTS
    Bath, Daniel
    [J]. JOURNAL OF SINGULARITIES, 2020, 20 : 165 - 204
  • [4] Bernstein-Sato polynomials of hyperplane arrangements
    Saito, Morihiko
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2016, 22 (04): : 2017 - 2057
  • [5] BERNSTEIN-SATO IDEALS AND LOCAL SYSTEMS
    Budur, Nero
    [J]. ANNALES DE L INSTITUT FOURIER, 2015, 65 (02) : 549 - 603
  • [6] Zero loci of Bernstein-Sato ideals
    Budur, Nero
    van der Veer, Robin
    Wu, Lei
    Zhou, Peng
    [J]. INVENTIONES MATHEMATICAE, 2021, 225 (01) : 45 - 72
  • [7] Local Bernstein-Sato ideals: Algorithm and examples
    Bahloul, Rouchdi
    Oaku, Toshinori
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2010, 45 (01) : 46 - 59
  • [8] BERNSTEIN-SATO THEORY FOR ARBITRARY IDEALS IN POSITIVE CHARACTERISTIC
    Quinlan-Gallego, Eamon
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (03) : 1623 - 1660
  • [9] A Note on Bernstein-Sato Varieties for Tame Divisors and Arrangements
    Bath, Daniel
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 2023, 73 (04) : 751 - 779
  • [10] Zero loci of Bernstein-Sato ideals-II
    Nero Budur
    Robin van der Veer
    Lei Wu
    Peng Zhou
    [J]. Selecta Mathematica, 2021, 27