Zero loci of Bernstein–Sato ideals

被引:0
|
作者
Nero Budur
Robin van der Veer
Lei Wu
Peng Zhou
机构
[1] KU Leuven,Department of Mathematics
[2] University of Utah,undefined
[3] Institut des Hautes Études Scientifiques,undefined
来源
Inventiones mathematicae | 2021年 / 225卷
关键词
14F10; 13N10; 32C38; 32S40; 32S55;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a conjecture of the first author relating the Bernstein–Sato ideal of a finite collection of multivariate polynomials with cohomology support loci of rank one complex local systems. This generalizes a classical theorem of Malgrange and Kashiwara relating the b-function of a multivariate polynomial with the monodromy eigenvalues on the Milnor fibers cohomology.
引用
收藏
页码:45 / 72
页数:27
相关论文
共 50 条