Bayesian spatio-temporal model with INLA for dengue fever risk prediction in Costa Rica

被引:0
|
作者
Shu Wei Chou-Chen
Luis A. Barboza
Paola Vásquez
Yury E. García
Juan G. Calvo
Hugo G. Hidalgo
Fabio Sanchez
机构
[1] Universidad de Costa Rica,Centro de Investigación en Matematica Pura y Aplicada
[2] Universidad de Costa Rica,Escuela de Estadística
[3] Universidad de Costa Rica,Escuela de Matemática
[4] University of California Davis,Department of Public Health Sciences
[5] Universidad de Costa Rica,Centro de Investigaciones Geofísicas and Escuela de Física
关键词
Bayesian inference; Climate; Public Health; Spatio-temporal models; Vector-borne disease; 62F15; 62P10; 62P12;
D O I
暂无
中图分类号
学科分类号
摘要
Due to the rapid geographic spread of the Aedes mosquito and the increase in dengue incidence, dengue fever has been an increasing concern for public health authorities in tropical and subtropical countries worldwide. Significant challenges such as climate change, the burden on health systems, and the rise of insecticide resistance highlight the need to introduce new and cost-effective tools for developing public health interventions. Various and locally adapted statistical methods for developing climate-based early warning systems have increasingly been an area of interest and research worldwide. Costa Rica, a country with microclimates and endemic circulation of the dengue virus (DENV) since 1993, provides ideal conditions for developing projection models with the potential to help guide public health efforts and interventions to control and monitor future dengue outbreaks. Climate information was incorporated to model and forecast the dengue cases and relative risks using a Bayesian spatio-temporal model, from 2000 to 2021, in 32 Costa Rican municipalities. This approach is capable of analyzing the spatio-temporal behavior of dengue and also producing reliable predictions.
引用
收藏
页码:687 / 713
页数:26
相关论文
共 50 条
  • [31] A spatio-temporal climate-based model of early dengue fever warning in southern Taiwan
    Yu, Hwa-Lung
    Yang, Shang-Jen
    Yen, Hsin-Ju
    Christakos, George
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2011, 25 (04) : 485 - 494
  • [32] A spatio-temporal climate-based model of early dengue fever warning in southern Taiwan
    Hwa-Lung Yu
    Shang-Jen Yang
    Hsin-Ju Yen
    George Christakos
    Stochastic Environmental Research and Risk Assessment, 2011, 25 : 485 - 494
  • [33] Spatio-temporal spillover risk of yellow fever in Brazil
    RajReni B. Kaul
    Michelle V. Evans
    Courtney C. Murdock
    John M. Drake
    Parasites & Vectors, 11
  • [34] Spatio-temporal spillover risk of yellow fever in Brazil
    Kaul, RajReni B.
    Evans, Michelle V.
    Murdock, Courtney C.
    Drake, John M.
    PARASITES & VECTORS, 2018, 11
  • [35] The role of social exclusion and deforestation in the spatio-temporal patterns of cutaneous leishmaniasis in Costa Rica
    Chaves, Luis F.
    Cohen, Justin M.
    Pascual, Mercedes
    Wilson, Mark L.
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2007, 77 (05): : 286 - 286
  • [36] Bayesian spatio-temporal modeling of malaria risk in Rwanda
    Semakula, Muhammed
    Niragire, Francois
    Faes, Christel
    PLOS ONE, 2020, 15 (09):
  • [37] Relative risk analysis of dengue cases using convolution extended into spatio-temporal model
    Sani, A.
    Abapihi, B.
    Mukhsar, Mukhsar
    Kadir, Kadir
    JOURNAL OF APPLIED STATISTICS, 2015, 42 (11) : 2509 - 2519
  • [38] Hot spot detection and spatio-temporal dispersion of dengue fever in Hanoi, Vietnam
    Do Thi Thanh Toan
    Hu, Wenbiao
    Pham Quang Thai
    Luu Ngoc Hoat
    Wright, Pamela
    Martens, Pim
    GLOBAL HEALTH ACTION, 2013, 6 : 7 - 15
  • [39] Spatio-temporal Bayesian model selection for disease mapping
    Carroll, Rachel
    Lawson, Andrew B.
    Faes, Christel
    Kirby, Russell S.
    Aregay, Mehreteab
    Watjou, Kevin
    ENVIRONMETRICS, 2016, 27 (08) : 466 - 478
  • [40] Effects of Climatic Factors on Dengue Incidence: A Comparison of Bayesian Spatio-Temporal Models
    Aswi, Aswi
    Sukarna
    Cramb, Susanna
    Mengersen, Kerrie
    Journal of Physics: Conference Series, 2021, 1863 (01):